Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

The Impact of Secondary Phyllosilicate Minerals on the Engineering Properties of Various Igneous Aggregates from Greece

Version 1 : Received: 22 June 2018 / Approved: 22 June 2018 / Online: 22 June 2018 (15:38:55 CEST)

A peer-reviewed article of this Preprint also exists.

Petrounias, P.; Giannakopoulou, P.P.; Rogkala, A.; Lampropoulou, P.; Koutsopoulou, E.; Papoulis, D.; Tsikouras, B.; Hatzipanagiotou, K. The Impact of Secondary Phyllosilicate Minerals on the Engineering Properties of Various Igneous Aggregates from Greece. Minerals 2018, 8, 329. Petrounias, P.; Giannakopoulou, P.P.; Rogkala, A.; Lampropoulou, P.; Koutsopoulou, E.; Papoulis, D.; Tsikouras, B.; Hatzipanagiotou, K. The Impact of Secondary Phyllosilicate Minerals on the Engineering Properties of Various Igneous Aggregates from Greece. Minerals 2018, 8, 329.

Abstract

This paper investigates the effect of alteration on the physicomechanical properties of igneous rocks from various areas from Greece used as aggregates. The studied lithologies include dunites, harzburgites, lherzolites, gabbros, diabases, dacites and andesites. Quantitative petrographic analysis shows that the tested samples display various percentages of secondary phyllosilicate minerals. Mineral quantification of studied rock samples was performed by using a Rietveld method on X-Ray diffraction patterns of the studied aggregates. The aggregates are also tested to assign moisture content [w (%)], total porosity [nt (%)], uniaxial compressive strength [UCS (MPa)] and Los Angeles abrasion test [LA (%)]. The influence of secondary phyllosilicate minerals on physicomechanical behavior of tested samples determined using regression analysis and their derived equations. Regression analysis shows positive relationship between the percentage of phyllosilicate minerals of rocks and moisture content as well as with the total porosity values. The relationships between phyllosilicate minerals in the ultramafic and mafic samples and their mechanical properties show that the total rates of phyllosilicate mineral products result negatively in their mechanical properties, while the low percentage of phyllosilicate minerals in volcanic rocks are not able to define set of their engineering parameters.

Keywords

phyllosilicate minerals; serpentine; chlorite; clay minerals; aggregates; physicomechanical properties

Subject

Environmental and Earth Sciences, Geophysics and Geology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.