Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Numerical Model for Predicting Bead Geometry and Microstructure in Laser Beam Welding of Inconel 718 Sheets

Version 1 : Received: 19 June 2018 / Approved: 20 June 2018 / Online: 20 June 2018 (05:12:19 CEST)

A peer-reviewed article of this Preprint also exists.

Hernando, I.; Arrizubieta, J.I.; Lamikiz, A.; Ukar, E. Numerical Model for Predicting Bead Geometry and Microstructure in Laser Beam Welding of Inconel 718 Sheets. Metals 2018, 8, 536. Hernando, I.; Arrizubieta, J.I.; Lamikiz, A.; Ukar, E. Numerical Model for Predicting Bead Geometry and Microstructure in Laser Beam Welding of Inconel 718 Sheets. Metals 2018, 8, 536.

Abstract

A numerical model was developed for predicting the bead geometry and microstructure in Laser Beam Welding of 2 mm thickness Inconel 718 sheets. The experiments were carried out with a 1 kW maximum power fiber laser coupled with a galvanometric scanner. Wobble strategy was employed for sweeping 1 mm wide circular areas for creating the weld seams and a specific tooling was manufactured for supplying protective Argon gas during the welding process. The numerical model takes into account both the laser beam absorption and the melt-pool fluid movement along the bead section, resulting in a weld geometry that depends on the process input parameters, such as feed rate and laser power. The microstructure of the beads was also estimated based on the cooling rate of the material. Features as bead upper and bottom final shapes, weld penetration and dendritic arm spacing were numerically and experimentally analyzed and discussed. The results given by the numerical analysis agree with the tests, making the model a robust predictive tool.

Keywords

laser; welding; LBW; model; microstructure; bead seam; wobble strategy; Inconel 718

Subject

Engineering, Industrial and Manufacturing Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.