Preprint
Article

Brazing Studies of Ti- Joint Using Ti20Zr20Cu60-xNix (x = 30, 40, and 50) Metallic Glass Ribbon as Filler Metal

This version is not peer-reviewed.

Submitted:

12 June 2018

Posted:

20 June 2018

You are already at the latest version

Abstract
The present study investigation, our results on characterization of commercially pure-Ti alloy brazed with metallic glass ribbons of Ti20Zr20Cu60-xNix (x = 30, 40, and 50) metallic glass ribbons were produced using a vacuum melt spinner. These ribbons were then used as filler materials for vacuum brazing of two Ti alloy plates at 1268, 1277 and 1279 K for a period of 10 min. Field-Emission Scanning Electron Microscopy (FESEM), Transmission Electron Microscopy (TEM) and the energy dispersive X-ray spectroscopy (EDX). The as-spun ribbons showed fully amorphous structure when examined on both surfaces by XRD and also verified by TEM investigation. The brazing joint of two Ti-plates using the metallic glass ribbon when brazed with Ni50 was found to be of very high strength. FESEM characterization of the cross-section of the brazed joints shows sub-micron size grains uniformly distributed in the matrix with brighter appearance. FESEM and EDX analysis revealed that the sub-micron grains are rich in Ti & Ni while the matrix phase mainly consisted of Ti. BSE image along with EDS Analysis indicated that the brazed joint has a presence of NiTi2 and Cu2 (Ni Zr) phases which could be responsible for increase in the strength of the brazed joint.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

524

Views

421

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated