Version 1
: Received: 9 June 2018 / Approved: 11 June 2018 / Online: 11 June 2018 (12:35:51 CEST)
How to cite:
Güler, E. The Third Laplace-Beltrami Operator of the Rotational Hypersurface in 4-Space. Preprints2018, 2018060159. https://doi.org/10.20944/preprints201806.0159.v1.
Güler, E. The Third Laplace-Beltrami Operator of the Rotational Hypersurface in 4-Space. Preprints 2018, 2018060159. https://doi.org/10.20944/preprints201806.0159.v1.
Cite as:
Güler, E. The Third Laplace-Beltrami Operator of the Rotational Hypersurface in 4-Space. Preprints2018, 2018060159. https://doi.org/10.20944/preprints201806.0159.v1.
Güler, E. The Third Laplace-Beltrami Operator of the Rotational Hypersurface in 4-Space. Preprints 2018, 2018060159. https://doi.org/10.20944/preprints201806.0159.v1.
Abstract
We consider rotational hypersurface in the four dimensional Euclidean space. We calculate the mean curvature and the Gaussian curvature, and some relations of the rotational hypersurface. Moreover, we define the third Laplace-Beltrami operator and apply it to the rotational hypersurface.
Keywords
4-space; the third Laplace-Beltrami operator; rotational hypersurface; Gaussian curvature; mean curvature
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.