Preprint Article Version 1 This version is not peer-reviewed

Normal Calculus on Moving Surfaces

Version 1 : Received: 6 June 2018 / Approved: 11 June 2018 / Online: 11 June 2018 (09:54:25 CEST)

How to cite: Afas, K.C. Normal Calculus on Moving Surfaces. Preprints 2018, 2018060148 (doi: 10.20944/preprints201806.0148.v1). Afas, K.C. Normal Calculus on Moving Surfaces. Preprints 2018, 2018060148 (doi: 10.20944/preprints201806.0148.v1).

Abstract

This paper presents an extension for principles of Differential Geometry on Surfaces (re-hashed through the budding field of CMS, the Calculus of Moving Surfaces). It analyzes mostly 2D Hypersurfaces with Riemannian Geometry and proposes the construction of a 3D Static Frame combining the Surface Basis Vectors with the Orthogonal Normal Field as a 3D Orthogonal Vector Frame. The paper introduces conventions for manipulating Tensors defined using this 3D Orthogonal Vector Frame as well as Curvature Connections associated with this Vector Frame. It then finally introduces Symbols and Tensors to describe Inner Products and Variance within the 3D Vector Frame and then extends all the above concepts to a surface which is Dynamic utilizing principles from CMS. This formulation has potential to extend identities and concepts from CMS and from Differential Geometry in a compact Tensorial Framework, which agrees with the new Framework proposed by CMS.

Subject Areas

calculus of moving surfaces; CMS; differential geometry; normal; tensor; hypersurfaces; dynamic

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.