Preprint Case Report Version 1 Preserved in Portico This version is not peer-reviewed

Comprehensive Study of Soil-Plant and Surface Water Chemistry Relationships in Highly S Contaminated Environment on Reforested Former Sulfur Borehole Mine Sites

Version 1 : Received: 6 June 2018 / Approved: 7 June 2018 / Online: 7 June 2018 (11:21:57 CEST)

A peer-reviewed article of this Preprint also exists.

Pietrzykowski, M.; Likus-Cieślik, J. Comprehensive Study of Reclaimed Soil, Plant, and Water Chemistry Relationships in Highly S-Contaminated Post Sulfur Mine Site Jeziórko (Southern Poland). Sustainability 2018, 10, 2442. Pietrzykowski, M.; Likus-Cieślik, J. Comprehensive Study of Reclaimed Soil, Plant, and Water Chemistry Relationships in Highly S-Contaminated Post Sulfur Mine Site Jeziórko (Southern Poland). Sustainability 2018, 10, 2442.

Abstract

Sulfur contamination of topsoil, spatial distribution of contamination and surface water chemistry were investigated on an area of over 200 ha of a new forest ecosystem. Common birch and Scots pine growth reaction, vitality and nutrients supply, as well as wood small-reed (Calamagrostis epigejos (L.) Roth) chemical composition were assayed. The chemistry dynamics of soil leaching and the sulfur load leached from the sulfur contaminated soil-substrates were analyzed. The remediation effect of the birch and pine litter was assayed in an experiment under controlled conditions. It was found that reclamation was effective in a majority of the post-mining site, however hot-spots with sulfur contamination reaching even 45,000 mg kg-1, pH <2.0, and EC 6,500 µS cm-1 were reported. Surface waters typically displayed elevated concentrations of sulfate ions (average 935.13 mg L-1), calcium ions (up to 434 mg L-1) and high EC (average 1.795 µS cm-1), which was connected both with sulfur contamination and sludge lime used in neutralization. Wood small-reed was found to be species adapting well to the conditions of elevated soil salinity and sulfur concentration. We noted that an addition of organic matter had a significant impact on the chemistry of soil solutions but did not indicate in short term experiment a remediation effect by increased sulfur leaching.

Keywords

sulfur; reclamation; acid mine drainage; salinity; soil contamination

Subject

Environmental and Earth Sciences, Environmental Science

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.