Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Encapsulation of Droplets Using Cusp Formation Behind a Drop Rising in a Non-Newtonian Fluid

Version 1 : Received: 29 May 2018 / Approved: 30 May 2018 / Online: 30 May 2018 (09:08:41 CEST)

A peer-reviewed article of this Preprint also exists.

Poryles, R.; Zenit, R. Encapsulation of Droplets Using Cusp Formation behind a Drop Rising in a Non-Newtonian Fluid. Fluids 2018, 3, 54. Poryles, R.; Zenit, R. Encapsulation of Droplets Using Cusp Formation behind a Drop Rising in a Non-Newtonian Fluid. Fluids 2018, 3, 54.

Abstract

The rising of an oil drop in a non-Newtonian viscous solution is studied experimentally. In this case, the shape of the ascending drop is strongly affected by the non-Newtonian properties of the surrounding liquid. We found that the so-called velocity discontinuity phenomena is observed for drops larger than a certain critical size. Beyond the critical velocity, the formation of a long tail is observed, from which small droplets are continuously emitted. We determined that the fragmentation of the tail results mainly from the effect of capillary effects. We explore the idea of using this configuration as a new encapsulation technique, where the size and frequency of droplets can be well predicted.

Keywords

drop; cusp instability; encapsulation

Subject

Physical Sciences, Fluids and Plasmas Physics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.