Preprint
Article

This version is not peer-reviewed.

Some Normal Intuitionistic Fuzzy Heronian Mean Operators Using Hamacher Operation and Their Application

A peer-reviewed article of this preprint also exists.

Submitted:

21 May 2018

Posted:

22 May 2018

You are already at the latest version

Abstract
Hamacher operation which is generalization of the Algebraic and Einstein operation, can widely provide a large number of arithmetical operation with respect to uncertainty information, and Heronian mean can deal with correlations of the input arguments or different criteria and don’t make calculation redundancy, meanwhile, the normal intuitionistic fuzzy numbers (NIFNs) can depict distinctively normal distribution information in practical decision making. In this paper, a multi-criteria group decision-making (MCGDM) problem is researched under the NIFNs environment, and a new MCGDM approach is introduced on the basis of the Hamacher operation. Firstly, according to Hamacher t-conorm and t-norm, some operational laws of NIFNs are presented. Secondly, it is noticed that Heronian mean can’t only once take into account mutual relation between attribute values once, but also consider the correlation between input argument and itself. Therefore, we develop some operators and study their properties in order to aggregate normal intuitionistic fuzzy numbers information, these operators include Hamacher Heronian mean (NIFHHM), Hamacher weighted Heronian mean (NIFHWHM), Hamacher geometric Heronian mean (NIFHGHM) and Hamacher weighted geometric Heronian mean (NIFHWGHM). Furthermore, we apply the proposed operators to the MCGDM problem and present a new method. The main characteristics of this new method involve that: (1) it is suitable to make decision under the normal intuitionistic fuzzy numbers environment and more reliable and reasonable to aggregate the normal distribution information. (2) it utilizes Hamacher operation which can provide more reliable and flexible decision-making results and offer an effective and powerful mathematic tool for the MAGDM under uncertainty. (3) it uses the Heronian mean operator which can considers relationships between the input arguments or the attributes and don’t brings subsequently about redundancy. Lastly, an application is given for showing the feasibility and effectiveness of the presented method in this paper.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated