Preprint Article Version 1 This version is not peer-reviewed

Vertically Resolved Precipitation Intensity Retrieved Through a Synergy Between the Ground-Based NASA MPLNET Lidar Network Measurements, Surface Disdrometer Datasets and an Analytical Model Solution

Version 1 : Received: 18 May 2018 / Approved: 21 May 2018 / Online: 21 May 2018 (11:09:01 CEST)

A peer-reviewed article of this Preprint also exists.

Lolli, S.; D’Adderio, L.P.; Campbell, J.R.; Sicard, M.; Welton, E.J.; Binci, A.; Rea, A.; Tokay, A.; Comerón, A.; Barragan, R.; Baldasano, J.M.; Gonzalez, S.; Bech, J.; Afflitto, N.; Lewis, J.R.; Madonna, F. Vertically Resolved Precipitation Intensity Retrieved through a Synergy between the Ground-Based NASA MPLNET Lidar Network Measurements, Surface Disdrometer Datasets and an Analytical Model Solution. Remote Sens. 2018, 10, 1102. Lolli, S.; D’Adderio, L.P.; Campbell, J.R.; Sicard, M.; Welton, E.J.; Binci, A.; Rea, A.; Tokay, A.; Comerón, A.; Barragan, R.; Baldasano, J.M.; Gonzalez, S.; Bech, J.; Afflitto, N.; Lewis, J.R.; Madonna, F. Vertically Resolved Precipitation Intensity Retrieved through a Synergy between the Ground-Based NASA MPLNET Lidar Network Measurements, Surface Disdrometer Datasets and an Analytical Model Solution. Remote Sens. 2018, 10, 1102.

Journal reference: Remote Sens. 2018, 10, 1102
DOI: 10.3390/rs10071102

Abstract

In this paper we illustrate a new, simple and complementary ground-based methodology to retrieve the vertically resolved atmospheric precipitation intensity through a synergy between measurements from the National Aeronautics and Space Administration (NASA) Micropulse Lidar network (MPLNET), an analytical model solution and ground-based disdrometer measurements. The presented results are obtained at two mid-latitude MPLNET permanent observational sites, located respectively at NASA Goddard Space Flight Center, USA, and at the Universitat Politècnica de Catalunya, Barcelona, Spain. The methodology is suitable to be applied to existing and/or future lidar/ceilometer networks with the main objective of either providing near-real time (3h latency) rainfall intensity measurements and/or to validate satellite missions, especially for critical light precipitation (<3 mm hr−1).

Subject Areas

rainfall; lidar; disdrometer; evaporation; meteorology; climate change; latent heat; precipitation

Readers' Comments and Ratings (0)

Leave a public comment
Send a private comment to the author(s)
Rate this article
Views 0
Downloads 0
Comments 0
Metrics 0
Leave a public comment

×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.