Preprint
Article

This version is not peer-reviewed.

New Tetrahydroisoquinoline Derivatives Overcome Pgp Activity in Brain-Blood Barrier and Glioblastoma Multiforme

A peer-reviewed article of this preprint also exists.

Submitted:

13 May 2018

Posted:

14 May 2018

You are already at the latest version

Abstract
P-glycoprotein (Pgp) determines resistance to a broad spectrum of drugs in glioblastoma multiforme (GB) because it is highly expressed in GB stem cells and in brain-blood barrier (BBB), the peculiar endothelium surrounding brain. Inhibiting Pgp activity in BBB and GB is still an open challenge. Here, we tested the efficacy of a small library of tetrahydroisoquinoline derivatives with an EC50 for Pgp < 50 nM, in primary human BBB cells and in patients-derived GB, from which we isolated differentiated/adherent cells (AC, i.e. Pgp-negative/doxorubicin-sensitive cells) and stem cells (neurospheres, NS, i.e. Pgp-positive/doxorubicin-resistant cells). At 1 nM, 3 compounds increased the delivery of doxorubicin, a typical substrate of Pgp, across BBB monolayer, without altering expression and activity of other transporters. The compounds increased the drug accumulation within NS, restoring necrosis, apoptosis and reduction in cell viability induced by doxorubicin. In co-culture systems, the compounds added to the luminal face of BBB increased the delivery of doxorubicin to NS growing under BBB and rescued the drug’s cytotoxicity. Our work identified new ligands of Pgp active at low nanomolar concentrations, that effectively reduce Pgp activity in BBB and GB, and can improve chemotherapy efficacy in this tumor.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated