Preprint Article Version 1 This version is not peer-reviewed

The Effects of Initiators Mixture on Suspension Polymerization of Vinyl Chloride and its Comparison with other Productivity-Enhancing Procedures

Version 1 : Received: 10 May 2018 / Approved: 10 May 2018 / Online: 10 May 2018 (13:11:48 CEST)

How to cite: Darvishi, R.; Shahi, A. The Effects of Initiators Mixture on Suspension Polymerization of Vinyl Chloride and its Comparison with other Productivity-Enhancing Procedures. Preprints 2018, 2018050166 (doi: 10.20944/preprints201805.0166.v1). Darvishi, R.; Shahi, A. The Effects of Initiators Mixture on Suspension Polymerization of Vinyl Chloride and its Comparison with other Productivity-Enhancing Procedures. Preprints 2018, 2018050166 (doi: 10.20944/preprints201805.0166.v1).

Abstract

Molecular and morphological properties of poly(vinyl chloride) grains produced by suspension polymerization of VCM in the presence of a mixture of three kind of initiators (i.e. fast, mild and slow) (named as Cok process) was experimentally investigated in a pilot-scale reactor. The results obtained here were initially compared with a isothermal regular process (named as control process) and then with those obtained already for other productivity-enhancing polymerization techniques (i.e. nonisothermal and fast initiator dosage process). The results showed that, in contrast to nonisothermal and fast initiator dosage process, the addition of initators mixture at the beginning of the reaction has the smallest influence on molecular weight and polydispersity index compared to control process. It is obvioused that Cok-PVC grains have the lowest cold plasticizer absorption and porosity among these mentioned processes. Scanning electron microscopy (SEM) showed that the particles produced by Cok process are more regularly shaped, with a smoother surface compared with the control product. According to the literatures, all three productivity-enhancing techniques lead to an apparent quality enhancement, higher flowability and greater bulk density of final grains. While both processes of continous initiator dosage and nonisothermal polymerization broaden the particle size distribution of final PVC grains, applying initiator mixture produces particles with the same particle size distribution as control process. The SEM images processing showed that Cok process deccelerates the formation of a three-dimensional skeleton of primary particles relative to the control polymerization. In comparison with nonisothermal trajectory and continous fast initiator dosage system, the Cok polymerization process leads to the most delay of motionless conversions and fusion time as well.

Subject Areas

VCM suspension polymerization, initiator mixtures, molecular characteristics, morphological properties

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.