Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Characterization of Phosphorus in a Toposequence of Subtropical Perhumid Forest Soils Facing a Subalpine Lake

Version 1 : Received: 1 May 2018 / Approved: 2 May 2018 / Online: 2 May 2018 (17:07:44 CEST)

A peer-reviewed article of this Preprint also exists.

Shiau, Y.-J.; Pai, C.-W.; Tsai, J.-W.; Liu, W.-C.; Yam, R.S.W.; Chang, S.-C.; Tang, S.-L.; Chiu, C.-Y. Characterization of Phosphorus in a Toposequence of Subtropical Perhumid Forest Soils Facing a Subalpine Lake. Forests 2018, 9, 294. Shiau, Y.-J.; Pai, C.-W.; Tsai, J.-W.; Liu, W.-C.; Yam, R.S.W.; Chang, S.-C.; Tang, S.-L.; Chiu, C.-Y. Characterization of Phosphorus in a Toposequence of Subtropical Perhumid Forest Soils Facing a Subalpine Lake. Forests 2018, 9, 294.

Abstract

The productivity of forests is often considered to be limited by the availability of phosphorus (P). Knowledge of the role of organic and inorganic P in humid subtropical forest soils is lacking. In this study, we used chemical fractionation and 31P nuclear magnetic resonance (NMR) spectroscopy to characterize the form of P and its distribution in undisturbed perhumid Chamaecyparis forest soils. The toposequence of transects was investigated for the humic layer from summit to footslope and lakeshore. The clay layer combined with a placic-like horizon in the subsoil may affect the distribution of soil P because both total P and organic P (Po) contents in all studied soils decreased with soil depth. In addition, Po content was negatively correlated with soil crystalline Fe oxide content, whereas inorganic P (Pi) content was positively correlated with soil crystalline Fe oxide content and slightly increased with soil depth. Thus, Pi may be mostly adsorbed by soil crystalline Fe oxides in the soils. Among all extractable P fractions, the NaOH-Po fraction appeared to be the major component, followed by NaHCO3-Po; the resin-P and HCl-Pi fractions were lowest. In addition, we found no typical trend for Pi and Po contents in soils with topographical change among the three sites. From the 31P-NMR spectra, the dominant Po form in soils from all study sites was monoesters with similar spectra. The 31P-NMR findings were basically consistent with those from chemical extraction. Soil formation processes may be the critical factor affecting the distribution of soil P. High precipitation and year-round high humidity may be important in the differentiation of the P species in this landscape.

Keywords

Chamaecyparis forest; humic substances, 31P nuclear magnetic resonance spectroscopy (31P NMR); P species; topography

Subject

Biology and Life Sciences, Ecology, Evolution, Behavior and Systematics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.