Submitted:

29 March 2018

Posted:

29 March 2018

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
In recent years, online social media information has been subject of study in several data science fields due to its impact on users as a communication and expression channel. Data~gathered from online platforms such as Twitter has the potential to facilitate research over social phenomena based on sentiment analysis, which usually employs Natural Language Processing and Machine Learning techniques to interpret sentimental tendencies related to users opinions and make predictions about real events. Cyber attacks are not isolated from opinion subjectivity on online social networks. Various security attacks are performed by hacker activists motivated by reactions from polemic social events. In this paper, a methodology for tracking social data that can trigger cyber attacks is developed. Our main contribution lies in the monthly prediction of tweets with content related to security attacks and the incidents detected based on ℓ1 regularization.
Keywords: 
security; social sentiment sensor; hackers; social media; statistics; L1 regression; twitter; cyber attacks
Subject: 
Computer Science and Mathematics  -   Information Systems
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

1251

Views

448

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated