Preprint
Article

This version is not peer-reviewed.

Young’s Equation vs. Sessile Drop Accelerometry: A Comparison Using the Interfacial Energies of Seven Polymer-water Systems

Submitted:

02 February 2018

Posted:

02 February 2018

You are already at the latest version

Abstract
In this study, the values of the interfacial energies of seven different polymer-water systems obtained by Sessile Drop Accelerometry (SDACC) are compared with the values obtained by the Young’s-equation-based Owens-Wendt method. The SDACC laboratory instrument –a combination of a drop shape analyzer with high-speed camera and a microgravity tower- and the evaluation algorithms, are designed to measure the interfacial energies as a function of the geometrical changes of a sessile droplet shape due to the effect of “switching off” gravity during the experiment. The method bases on Thermodynamics of Interfaces and differs from the conventional aproach of the two hundred-years-old Young’s equation in that it assumes a thermodynamic equilibrium between interfaces, rather than a balance of forces on a point of the solid-liquid-gas contour line. A comparison of the mathematical model that supports the SDACC method with the widely accepted Young`s equation is discussed in detail in this study.
Keywords: 
;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated