Preprint

Article

Altmetrics

Downloads

693

Views

548

Comments

0

This version is not peer-reviewed

The performance in terms of minimal Bayes’ error probability for detection of a high-dimensional random tensor is a fundamental under-studied difficult problem. In this work, we consider two Signal to Noise Ratio (SNR)-based detection problems of interest. Under the alternative hypothesis, i.e., for a non-zero SNR, the observed signals are either a noisy rank-R tensor admitting a Q-order Canonical Polyadic Decomposition (CPD) with large factors of size Nq R, i.e, for 1 q Q, where R, Nq ! ¥ with R1/q/Nq converge towards a finite constant or a noisy tensor admitting TucKer Decomposition (TKD) of multilinear (M1, . . . ,MQ)-rank with large factors of size Nq Mq, i.e, for 1 q Q, where Nq,Mq ! ¥ with Mq/Nq converge towards a finite constant. The detection of the random entries (coefficients) of the core tensor in the CPD/TKD is hard to study since the exact derivation of the error probability is mathematically intractable. To circumvent this technical difficulty, the Chernoff Upper Bound (CUB) for larger SNR and the Fisher information at low SNR are derived and studied, based on information geometry theory. The tightest CUB is reached for the value minimizing the error exponent, denoted by s?. In general, due to the asymmetry of the s-divergence, the Bhattacharyya Upper Bound (BUB) (that is, the Chernoff Information calculated at s? = 1/2) can not solve this problem effectively. As a consequence, we rely on a costly numerical optimization strategy to find s?. However, thanks to powerful random matrix theory tools, a simple analytical expression of s? is provided with respect to the Signal to Noise Ratio (SNR) in the two schemes considered. A main conclusion of this work is that the BUB is the tightest bound at low SNRs. This property is, however, no longer true for higher SNRs.

Keywords:

Subject: Computer Science and Mathematics - Probability and Statistics

Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Submitted:

01 February 2018

Posted:

01 February 2018

You are already at the latest version

Alerts

This version is not peer-reviewed

Submitted:

01 February 2018

Posted:

01 February 2018

You are already at the latest version

Alerts

The performance in terms of minimal Bayes’ error probability for detection of a high-dimensional random tensor is a fundamental under-studied difficult problem. In this work, we consider two Signal to Noise Ratio (SNR)-based detection problems of interest. Under the alternative hypothesis, i.e., for a non-zero SNR, the observed signals are either a noisy rank-R tensor admitting a Q-order Canonical Polyadic Decomposition (CPD) with large factors of size Nq R, i.e, for 1 q Q, where R, Nq ! ¥ with R1/q/Nq converge towards a finite constant or a noisy tensor admitting TucKer Decomposition (TKD) of multilinear (M1, . . . ,MQ)-rank with large factors of size Nq Mq, i.e, for 1 q Q, where Nq,Mq ! ¥ with Mq/Nq converge towards a finite constant. The detection of the random entries (coefficients) of the core tensor in the CPD/TKD is hard to study since the exact derivation of the error probability is mathematically intractable. To circumvent this technical difficulty, the Chernoff Upper Bound (CUB) for larger SNR and the Fisher information at low SNR are derived and studied, based on information geometry theory. The tightest CUB is reached for the value minimizing the error exponent, denoted by s?. In general, due to the asymmetry of the s-divergence, the Bhattacharyya Upper Bound (BUB) (that is, the Chernoff Information calculated at s? = 1/2) can not solve this problem effectively. As a consequence, we rely on a costly numerical optimization strategy to find s?. However, thanks to powerful random matrix theory tools, a simple analytical expression of s? is provided with respect to the Signal to Noise Ratio (SNR) in the two schemes considered. A main conclusion of this work is that the BUB is the tightest bound at low SNRs. This property is, however, no longer true for higher SNRs.

Keywords:

Subject: Computer Science and Mathematics - Probability and Statistics

Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Computational Information Geometry For Binary Classification of High-Dimensional Random Tensors

Gia-Thuy Pham

et al.

,

2018

Numerical Comparisons Between Bayesian and Frequentist Low-Rank Matrix Completion: Estimation Accuracy and Uncertainty Quantification

The Tien Mai

,

2021

Restricted Singular Value Decomposition for a Tensor Triplet under T-product and Its Applications

Chong-Quan Zhang

et al.

,

2024

© 2024 MDPI (Basel, Switzerland) unless otherwise stated