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Abstract: The performance in terms of minimal Bayes’ error probability for detection of a
high-dimensional random tensor is a fundamental under-studied difficult problem. In this work, we
consider two Signal to Noise Ratio (SNR)-based detection problems of interest. Under the alternative
hypothesis, i.e., for a non-zero SNR, the observed signals are either a noisy rank-R tensor admitting a
Q-order Canonical Polyadic Decomposition (CPD) with large factors of size Nq× R, i.e, for 1 ≤ q ≤ Q,
where R, Nq → ∞ with R1/q/Nq converge towards a finite constant or a noisy tensor admitting
TucKer Decomposition (TKD) of multilinear (M1, . . . , MQ)-rank with large factors of size Nq ×Mq,
i.e, for 1 ≤ q ≤ Q, where Nq, Mq → ∞ with Mq/Nq converge towards a finite constant. The detection
of the random entries (coefficients) of the core tensor in the CPD/TKD is hard to study since the
exact derivation of the error probability is mathematically intractable. To circumvent this technical
difficulty, the Chernoff Upper Bound (CUB) for larger SNR and the Fisher information at low SNR
are derived and studied, based on information geometry theory. The tightest CUB is reached for
the value minimizing the error exponent, denoted by s?. In general, due to the asymmetry of the
s-divergence, the Bhattacharyya Upper Bound (BUB) (that is, the Chernoff Information calculated at
s? = 1/2) can not solve this problem effectively. As a consequence, we rely on a costly numerical
optimization strategy to find s?. However, thanks to powerful random matrix theory tools, a simple
analytical expression of s? is provided with respect to the Signal to Noise Ratio (SNR) in the two
schemes considered. A main conclusion of this work is that the BUB is the tightest bound at low
SNRs. This property is, however, no longer true for higher SNRs.

Keywords: Optimal Bayesian detection, information geometry, minimal error probability,
Chernoff/Bhattacharyya upper bound, large random tensor, Fisher information, large random
sensing matrix

1. Introduction

1.1. State-of-the-art and problem statement

Evaluating the performance limit for the “Gaussian information plus noise” detection problem is
a challenging research topic, see for instance [6,8,9,34,36,39,46]. Given a binary hypothesis problem,
the Bayes’ decision rule is based on the principle of the largest posterior probability. Specifically,
the Bayesian detector chooses the alternative hypothesis H1 if Pr(H1|y) > Pr(H0|y) for a given
N-dimensional measurement vector y or the null hypothesisH0, otherwise. Consequently, the optimal
decision rule can often only be derived at the price of a costly numerical computation of the log
posterior-odds ratio [34] since an exact calculation of the minimal Bayes’ error probability P(N)

e is
often intractable [17,34]. To circumvent this problem, it is standard to exploit well-known bounds
on P(N)

e based on information theory [2,24,32,42,47]. In particular, the Chernoff information [19,40]
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is asymptotically (in N) relied to the exponential rate of P(N)
e . The Chernoff information turns out

to be useful in many problems of practical importance as for instance, distributed sparse detection
[18], sparse support recovery [48], energy detection [35], MIMO radar processing [31,45], network
secrecy [13], Angular Resolution Limit in array processing [27], detection performance for informed
communication systems [33], just to name a few. In addition, the Chernoff information bound
can be tight for a minimal s-divergence over parameter s ∈ (0, 1). Generally, this step requires
to solve numerically an optimization problem [41] and often leads to a complicated and uninformative
expression of the optimal value of s. To circumvent this difficulty, a simplified case of s = 1/2 is often
used corresponding to the well-known Bhattacharyya divergence [47] at the price of a less accurate
prediction of P(N)

e . In information geometry, parameter s is often called α, and the s-divergence is the
so-called Chernoff α-divergence [41].

The theory of tensor decomposition is a timely and important research topic [20,23]. Tensors are
useful to extract relevant information confined into a small dimensional subspace from a massive and
multidimentional volume of measurements. In the standard literature, two main families of tensor
decomposition are prominent. Namely the Canonical Polyadic Decomposition (CPD) [23] and the
Tucker decomposition (TKD)/HOSVD (High-Order SVD) [25,49]. These approaches are two possible
multilinear generalization of the Singular Value Decomposition (SVD). A natural generalization to
tensors of the usual concept of rank for matrices is called the CPD. The tensorial/canonical rank of a
P-order tensor is equal to the minimal positive integer, say R, of unit rank tensors that must be summed
up for perfect recovery. A unit rank tensor is the outer product of P vectors. In addition, the CPD has
remarkable uniqueness properties [23] and involves only a reduced number of free parameters due
to the constraint of minimality on R. Unfortunately, unlike to the matrix case, the set of tensors with
fixed (tensorial) rank is not close [21,26]. This singularity implies that the problem of the computation
of the CPD is mathematically ill-posed. The consequence is that its numerical computation remains
non trivial and is usually done using suboptimal iterative algorithms [22]. Note that this problem can
sometimes be avoided by exploiting some natural hidden structures in the physical model [30]. The
TKD [49] and the HOSVD [25] are two popular decompositions being an alternative to the CPD. In this
case, the notion of tensorial rank is no longer relevant and a new rank definition is used. Specifically, it
is standard to use the multilinear rank defined as the set of positive integers {R1, . . . , RP} where each
integer, Rp, is the usual rank of the p-th mode. Its practical construction is non-iterative and optimal in
the sense of the Eckart-Young theorem at each mode level. This approach is interesting because it can
be computed in real-time [4] or adaptively [12]. Unfortunately, it is shown that the low (multilinear)
rank tensor based on this procedure is generally suboptimal [25]. In other words, there does not exist a
generalization of the Eckart-Young theorem for tensors of order strictly greater than two!

The detection performance of a multilinear tensor following the CPD and TKD can be derived and
studied. It is important to note that the detection theory for tensors is a very under studied research
topic. To the best of our knowledge, only the publication [10] tackles this problem in the context of
RADAR multidimensional data detection. A major difference with this publication is that their analysis
is based on the performance of a low rank detection after matched filtering.
More specifically, we consider two cases where the observations are either (1) a noisy rank-R tensor
admitting a Q-order CPD with large factors of size Nq × R, i.e, for 1 ≤ q ≤ Q, R, Nq → ∞ with
R1/q/Nq converging towards a finite constant, or (2) a noisy tensor admitting a TKD of multilinear
(M1, . . . , MQ)-rank with large factors of size Nq ×Mq, i.e., for 1 ≤ q ≤ Q, where Nq, Mq → ∞ with
Mq/Nq converging towards a finite constant. For zero-mean independent Gaussian core and noise
tensors a key discriminative parameter is the Signal to Noise Ratio defined by SNR = σ2

s /σ2 where σ2
s

and σ2 are the variances of the vectorized core and noise tensors, respectively. So, the binary hypothesis
test of interest can be described in the following way:

Under the null hypothesis H0, SNR = 0, meaning that only the noise is present. Conversely,
the alternative hypothesis H1 is based on SNR 6= 0, meaning that there exists a multilinear signal
of interest. First note that there exists a lack of contribution dealing with detection performance
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for tensors. The detection of the random entries of the core tensor is hard to study since the exact
derivation of the error probability is intractable. To circumvent this technical difficulty, based on
computational information geometry theory, we consider the Chernoff Upper Bound (CUB), and the
Fisher information in the context of massive measurement vectors. The tightest CUB is reached for
the value, denoted by s?, which minimizes the error exponent. In general, due to the asymmetry
of the s-divergence, the Bhattacharyya Upper Bound (BUB) — Chernoff Information calculated at
s? = 1/2— cannot solve this problem effectively. As a consequence, we rely on a costly numerical
optimization strategy to find s?. However, thanks to powerful Random Matrix Theory (RMT) tools,
a simple analytical expression of s? is provided with respect to the Signal to Noise Ratio (SNR). For
low SNR, analytical expressions of the Fisher information are given. Note that the analysis of the
Fisher information in the context of the RMT has been only studied in recent contributions [11,14,43]
for parameter estimation. For larger SNR, analytic and simple expression of the CUB for the CPD and
the TKD are provided.

We note that Random Matrix Theory (RMT) has fascinated both mathematicians and physicists
since they were first introduced in mathematical statistics by Wishart in 1928 [54]. After a slow start,
the subject gained prominence when Wigner [52] introduced the concept of statistical distribution of
nuclear energy levels in 1950. However, it took until 1955 before Wigner [53] introduced ensembles of
random matrices. Since then, many important results in RMT were developed and analyzed, see for
instance [5,29,38,51] and the references therein. In the last two decades, researches on RMT has been
constantly published.

1.2. Paper organisation

The organization of the paper is as follows: In the second section, we introduce some definitions,
tensor models, and the Marchenko-Pastur distribution from random matrix theory. The third section is
devoted to present Chernoff Information for binary hypothesis test. The fourth section gives the main
results on Fisher Information and the Chernoff bound. The numerical simulation results are given in
the fifth section. We conclude our work by giving some perspectives in the Section 6. Finally, several
proofs of the paper can be found in the appendix. We also give the list of theorem, result, lemma,
remark and definitions.
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2. Algebra of tensors and Random Matrix Theory (RMT)

In this section, we introduce some useful definitions from tensor algebra and from the spectral
theory of large random matrices.

2.1. Multilinear functions

2.1.1. Preliminary definitions

Definition 1. The Kronecker product of matrices X and Y of size I × J and K× N, respectively is given by

X⊗ Y =

[X]11Y . . . [X]1JY
...

...
[X]I1Y . . . [X]I JY

 ∈ R(IK)×(JN).

We have rank{X⊗ Y} = rank{X} · rank{Y}.

Definition 2. The vectorization vec(X ) of a tensor X ∈ RM1×...×MQ is a vector x ∈ RM1 M2...MQ defined as

xh = [X ]m1,...,mQ

where h = m1 + ∑Q
k=2(mk − 1)M1M2...Mk−1.

Definition 3. The q-mode product denoted by×q between a tensor X ∈ RM1×...×MQ and a matrix U ∈ RK×Mq

is denoted by X ×q U ∈ RM1×...×Mq−1×K×Mq+1×...×MQ with

[X ×q U]m1,...,mq−1,k,mq+1,...,mQ =
Mq

∑
mq=1

[X ]m1,...,mQ [U]k,mq

where 1 ≤ k ≤ K.

Definition 4. The q-mode unfolding matrix of size Mq ×
(

∏Q
k=1,k 6=q Mk

)
denoted by X(q) = unfoldq(X ) of

a tensor X ∈ RM1×...×Mq is defined according to

[X(q)]Mq ,h = [X ]m1,...,mQ

where h = 1 + ∑Q
k=1,k 6=q(mk − 1)∏k−1

v=1,v 6=q Mv.

2.1.2. Canonical Polyadic Decomposition (CPD)

The rank-R CPD of order Q is defined according to

X =
R

∑
r=1

sr

(
φ
(1)
r ◦ . . . ◦φ

(Q)
r

)
︸ ︷︷ ︸

X r

with rank{X r} = 1

where ◦ is the outer product [20], φ
(q)
r ∈ RNq×1 and sr is a real scalar.

An equivalent formulation using the q-mode product defined in Def. 3 is

X = S ×1 Φ(1) ×2 . . .×Q Φ(Q)

where S is the R× · · · × R diagonal core tensor with [S ]r,...,r = sr and Φ(q) = [φ
(q)
1 ...φ(q)

R ] is the q-th
factor matrix of size Nq × R.

The q-mode unfolding matrix for tensor X is given by
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X(q) = Φ(q)S
(

Φ(Q) � ...�Φ(q+1) �Φ(q−1) � ...�Φ(1)
)T

where S = diag(s) with s = [s1, ..., sR]
T and � stands for the Khatri-Rao product [20].

2.1.3. Tucker Decomposition (TKD)

The Tucker tensor model of order Q is defined according to

X =
M1

∑
m1=1

M2

∑
m2=1

...
MQ

∑
mQ=1

sm1m2...mQ

(
φ
(1)
m1 ◦φ

(2)
m2 ◦ · · · ◦φ

(Q)
mQ

)

where φ
(q)
mq ∈ RNq×1, q = 1, ..., Q and sm1m2...mQ is a real scalar.

The q-mode product of X is similar to CPD case, however the q-mode unfolding matrix for tensor X
is slightly different

X(q) = Φ(q)S(q)

(
Φ(Q) ⊗ . . .⊗Φ(q+1) ⊗Φ(q−1) . . .⊗Φ(1)

)T

where S(q) ∈ RNq×N1 N2...Nq−1 Nq+1...NQ the q-mode unfolding matrix of tensor S , Φ(q) = [φ
(q)
1 ...φ(q)

Mq
] ∈

RNq×Mq and ⊗ stands for Kronecker product.

Figure 1. Canonical Polyadic Decomposition (CPD)

At this point, it is important to note that the CPD and TKD formalism implies that vector x in (11)
is related either to the structured linear system Φ� or Φ⊗ .

2.2. The Marchenko-Pastur distribution

The Marchenko-Pastur distribution was introduced half a century ago [38] in 1967, and plays a key
role in a number of high-dimensional signal processing problems. To help the reader, in this section, we
introduce some fundamental results concerning large empirical covariance matrices. Let (vn)n=1,...,N a
sequence of i.i.d zero mean Gaussian random M-dimensional vectors for which E(vnvT

n ) = σ2 IM. We
consider the empirical covariance matrix

1
N

N

∑
n=1

vnvT
n

which can be also written as
1
N

N

∑
n=1

vnvT
n = W NW T

N
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where matrix W N is defined by W N = 1√
N
[v1, ..., vN ]. W N is thus a Gaussian matrix with independent

identically distributed N (0, σ2

N ) entries. When N → +∞ while M remains fixed, matrix W NW T
N

converges towards σ2 IM in the spectral norm sense. In the high dimensional asymptotic regime
defined by

M→ +∞, N → +∞, cN =
M
N
→ c > 0

it is well understood that
∥∥∥W NW T

N − σ2 IM

∥∥∥ does not converge towards 0. In particular, the empirical

distribution ν̂N = 1
M ∑M

m=1 δλ̂m,N
of the eigenvalues λ̂1,N ≥ ... ≥ λ̂M,N of W NW T

N does not converge

towards the Dirac measure at point λ = σ2. More precisely, we denote by νc,σ2 the Marchenko-Pastur
distribution of parameters (c, σ2) defined as the probability measure

νc,σ2(dλ) = δ0[1−
1
c
]+ +

√
(λ− λ−)(λ+ − λ)

2σ2cπλ
1[λ− ,λ+ ](λ)dλ (1)

with λ− = σ2(1−
√

c)2 and λ+ = σ2(1 +
√

c)2. Then, the following result holds.

Theorem 5. ([38]) The empirical eigenvalue value distribution µ̂N converges weakly almost surely towards
µd,σ2 when both M and N converge towards +∞ in such a way that cN = M

N converges towards c > 0.
Moreover, it holds that

λ̂1,N → σ2(1 +
√

c)2 a.s. (2)

λ̂min(M,N) → σ2(1−
√

c)2 a.s. (3)
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Figure 2. Histogram of the eigenvalues of WN WT
N

N (with M = 256, cN = M
N = 1

256 , σ2 = 1)
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Figure 3. Histogram of the eigenvalues of WN WT
N

N (with M = 256, cN = M
N = 1

4 , σ2 = 1)

We also observe that Theorem 5 remains valid if WN is not necessarily a Gaussian matrix whose
i.i.d. elements have a finite fourth order moment (see e.g. [5]). Theorem 5 means that when ratio M

N
is not small enough, the eigenvalues of the empirical spatial covariance matrix of a temporally and
spatially white noise tend to spread out around the variance of the noise, and that almost surely, for N
large enough, all the eigenvalues are located in a neighbourhood of interval [λ−, λ+].

3. Classification in a Computational Information Geometry (CIG) framework

3.1. Formulation based on a SNR-type criterion

Let SNR = σ2
s /σ2 and pi(·) = p(·|Hi) with i ∈ {0, 1}. The equi-probable binary hypothesis test

for the detection of the random signal, s, is{
H0 : p0(yN ; Φ, SNR = 0) = N (0, Σ0) ,
H1 : p1(yN ; Φ, SNR 6= 0) = N (0, Σ1)

(4)

where Σ0 = σ2IN and Σ1 = σ2
(

SNR ·ΦΦT + IN

)
. The data-space for the null hypothesis (H0) is

given by X0 = X \ X1 where

X1 =

{
yN : Λ(yN) = log

p1(yN)

p0(yN)
> τ′

}
is the data-space for the alternative hypothesis (H1). In the above test, Λ(yN) is the log likelihood ratio
test and τ′ is the detection threshold given by the following two expressions:

Λ(yN) =
yT

NΦ
(

ΦTΦ + SNR · I
)−1

ΦTyN

σ2 ,

τ′ = − log det
(

SNR ·ΦΦT + IN

)
where det(·) and log(·) stand for the determinant and the natural logarithm, respectively.
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3.2. Geometry of the expected log-likelihood ratio

Consider p(yN
∣∣Ĥ) = N (0, Σ) associated to the estimated hypothesis Ĥ. The expected

log-likelihood ratio is given by

E
yN

∣∣ĤΛ(yN) =
∫
X

p(yN
∣∣Ĥ) log

p1(yN)

p0(yN)
dyN

= KL(Ĥ||H0)−KL(Ĥ||H1)

=
1
σ2 Tr

{(
ΦTΦ + SNR · I

)−1
ΦTΣΦ

}
where

KL(Ĥ||Hi) =
∫
X

p(yN
∣∣Ĥ) log

p(yN
∣∣Ĥ)

pi(yN)
dyN

is the Kullback-Liebler Divergence (KLD) [24]. The expected log-likelihood ratio test admits to a simple
geometric characterization based on the difference of two KLDs [17]. But, the performance of the
detector of interest in terms of the minimal Bayes’ error probability, denoted by P(N)

e , is quite often
difficult to determine analytically [17,34] in closed-form.

Define the minimal Bayes’ error probability conditionally to vector yN according to

Pr(Error|yN) =
1
2

min{P1,0, P0,1}

where Pi,i′ = Pr(Hi|yN ∈ Xi′).

3.3. CUB

The (average) minimal Bayes’ error probability defined by P(N)
e = EPr(Error|yN) is upper

bounded according to the CUB [41] such as

P(N)
e ≤ 1

2
· exp[−µN(s)] (5)

where the (Chernoff) s-divergence for s ∈ (0, 1) is given by

µN(s) = − log MΛ(yN |H1)
(−s) (6)

in which MX(t) = E exp[t ·X] is the moment generating function (mgf) of variable X. The error exponent,
denoted by µ(s), is given by the Chernoff information which is an asymptotic characterization on the
exponentially decay of the minimal Bayes’ error probability. The error exponent is derived thanks to
the Stein’s lemma according to [47]

− lim
N→∞

log P(N)
e

N
= lim

N→∞

µN(s)
N

def.
= µ(s).

As parameter s ∈ (0, 1) is free, the CUB can be tightened by minimizing this parameter:

s? = arg min
s∈(0,1)

µ(s). (7)
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Finally using eq. (5) and eq. (7), we obtain the Chernoff Upper Bound (CUB). The Bhattacharyya
Upper Bound (BUB) is obtained by eq. (5) and by fixing s = 1/2 instead of solving eq. (7). Therefore
we have the following relation of order:

P(N)
e ≤ 1

2
· exp[−µN(s?)] ≤

1
2
· exp[−µN(1/2)].

Lemma 6. The log-moment generating function given by eq. (6) for test of eq. (4) is given by

µN(s) =
1− s

2
log det

(
SNR ·ΦΦT + I

)
(8)

− 1
2

log det
(

SNR · (1− s)ΦΦT + I
)

.

Proof. See Appendix 7.1

3.4. Fisher information

In the small deviation regime, we assume that δSNR is a small deviation of the SNR. The new
binary hypothesis test is {

H0 : y|δSNR = 0 ∼ N (0, Σ(0)) ,

H1 : y|δSNR 6= 0 ∼ N
(

0, Σ(δSNR)
)

where Σ(x) = x ·ΦΦT + I. The s-divergence in the small SNR deviation scenario is written as

µN(s) =
1− s

2
log det [Σ(δSNR)]− 1

2
log det [Σ(δSNR · (1− s))]

Lemma 7. The s-divergence in the small deviation regime can be approximated according to

µN(s)
N

δSNR�1≈ (s− 1)s · (δSNR)2

2
· JF(0)

N

where the Fisher information [34] is given by

JF(x) =
1
2

Tr((I + x ·ΦΦT)−1ΦΦT(I + x ·ΦΦT)−1ΦΦT).

Proof. See Appendix 7.2

According to Lemma 7, the optimal s-value at low SNR is s? δSNR�1
= 1

2 . At contrary, the optimal
s-value for larger SNR is given by the following lemma.

Lemma 8. In case of large SNR, we have

s?
SNR�1≈ 1− 1

log SNR + 1
K ∑K

n=1 log λn
. (9)

where (λn)n=1,...,N are the eigenvalues of ΦΦT .

Proof. See Appendix 7.3
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4. Computational Information Geometry for classification

4.1. Formulation of the observation vector as a structured linear model

Assume that the measurement tensor follows a noisy Q-order tensor of size N1 × . . .× NQ given
by

Y = X +N (10)

where N is the noise tensor where each entry is assumed to be centered i.i.d. Gaussian, i.e. [N ]n1,...,nQ ∼
N (0, σ2) and the noise-free tensor X follows either CPD or TKD given by definition 2.1.2 and definition
2.1.3, respectively. The vectorization of (10) is given by

yN = vec(Y(1)) = x + n (11)

where n = vec(N(1)) and x = vec(X(1)). Note that Y(1), N(1) and X(1) are respectively the first
unfolding matrices given by definition 4 of tensors Y ,N and X ,

1. When tensor X follows a Q-order CPD with a canonical rank of M, we have

x = vec
{

Φ(1)S
(

Φ(Q) � . . .�Φ(2)
)T
}

= Φ�s

where Φ� = Φ(Q) � . . . � Φ(1) is a N × R structured matrix and s =
[
s1 . . . sR

]T
where

sr ∼ N (0, σ2
s ), i.i.d. and N = N1 · · ·NQ.

2. When tensor X follows a Q-order TKD of multilinear rank of {M1, . . . , MQ}, we have

x = vec
{

Φ(1)S(1)

(
Φ(Q) ⊗ . . .⊗Φ(2)

)T
}

= Φ⊗vec(S)

where Φ⊗ = Φ(Q) ⊗ . . .⊗Φ(1) is a N ×M structured matrix with M = M1 · · ·MQ and vec(S)

is the vectorization of tensor S where sm1,...,.mQ ∼ N (0, σ2
s ), i.i.d..

4.2. The CPD case

We recall that in the CPD case, matrix Φ� = Φ(Q) � . . .�Φ(1) and (Φ(q))q=1,...,Q are matrices of

size Nq × R. In the following, we assume that matrices Φ
(q)
q=1,...,Q are random matrices with Gaussian

N (0, 1
Nq
) variate entries. We evaluate the behavior of µN(s)

N when (Nq)q=1,...,Q converge towards +∞ at

the same rate and that R
N converges towards a non zero limit.

Result 9. In the asymptotic regime where N1, . . . , NQ converge towards +∞ at the same rate and where
R→ +∞ in such a way that cR = R

N converges towards a finite constant c > 0, it holds that

µN(s)
N

a.s−→ µ(s) =
1− s

2
Ψc(SNR)− 1

2
Ψc((1− s) · SNR) (12)
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with a.s standing for “almost sure convergence” and

Ψc (x) = log
(

1 +
2c

u(x) + (1− c)

)
+ c · log

(
1 +

2
u(x)− (1− c)

)
− 4c

x(u(x)2 − (1− c)2)
(13)

with u(x) = 1
x +

√
( 1

x + λ+
c )(

1
x + λ−c ) where λ±c = (1±

√
c)2.

Proof. See Appendix 7.4.

Remark 10. In [37], the Central Limit Theorem (CLT) for the linear eigenvalue statistics of the tensor version
of the sample covariance matrix of type Φ�(Φ�)T is established, for Φ� = Φ(2) �Φ(1), i.e the tensor order is
Q = 2.

4.2.1. Small SNR deviation scenario

In this section, we assume that SNR is small. Under this regime, we have the following result:

Result 11. In the small SNR scenario, the Fisher information for CPD is given as

µ

(
1
2

)
SNR�1≈ − (SNR)2

16
· c(1 + c).

Proof. Using lemma 7, we can notice that

JF(0)
N

=
1
2

R
N

1
R

Tr
[
(Φ�(Φ�)T)2

]
and that

1
R

Tr
[
(Φ�(Φ�)T)2

]
converges a. s. towards the second moment of the Marchenko-Pastur distribution which is 1 + c (see
for instance [5]).

Note that µ
(

1
2

)
is the error exponent related to the Bhattacharyya divergence.

4.2.2. Large SNR deviation scenario

Result 12. In case of large SNR, the minimizer of Chernoff Information is given by

s?
SNR�1≈ 1− 1

log SNR− 1− 1−c
c log(1− c)

. (14)

Proof. It is straightforward to notice that

1
K

K

∑
n=1

log(λn) −→
∫ +∞

0
log(λ)dνc(λ) = −1− 1− c

c
log(1− c).

The last equality can be obtained as in [50]. Using lemma 8, we get immediately (14).
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Remark 13. It is interesting to note that for c → 0 or 1, the optimal s-value follows the same approximated
relation given by

s?
SNR�1≈ 1− 1

log SNR

as long as SNR� exp[1] or equivalently a SNR in dB much larger than 4 dB.

Proof. It is straightforward to note that

1− c
c

log(1− c) c→1−→ 0, and
1− c

c
log(1− c) c→0−→ −1.

Using eq. (14) and condition SNR� exp[1], the desired result is proved.

4.2.3. Approximated analytical expressions for c� 1 and any SNR

For low rank CPD we have R� N and thus it is realistic to assume c� 1.

Result 14. In this context, the error exponent can be approximated as follows:

µ(s)
c�1≈ c

2

(
(1− s) log(1 + SNR)− log(1 + (1− s)SNR)

)
.

Proof. See Appendix 7.5.

As the second-order derivative of µ(s) is strictly positive, µ(s) is a strictly convex function over
interval (0, 1). In addition, as a strictly convex function has at most one global minimum, we deduce
that the stationary point s? is a global minimizer and is given by zeroing the first-order derivative of
the error exponent. This optimal value is given by

s?
c�1≈ 1 +

1
SNR

− 1
log(1 + SNR)

. (15)

We can identify the two following limit scenarios:

• At low SNR, the error exponent associated with the tightest CUB, denoted by µ(s?), coincides
with the error exponent associated with the BUB. Indeed, the optimal value in eq. (15) admits a
second-order approximation for c� 1 according to

s?
2≈ 1 +

1
SNR

(
1−

(
1 +

SNR
2

))
=

1
2

.

Using Result 9 and the above approximation, the best error exponent at low SNR and for c� 1
is given by

µ

(
1
2

)
SNR�1≈ 1

4
Ψc�1(SNR)− 1

2
Ψc�1

(
SNR

2

)
=

c
2

log
√

1 + SNR
1 + SNR

2

.

• At contrary for SNR→ ∞, we have s? → 1. So, the error exponent associated to BUB cannot be
considered as optimal in this regime. Using eq. (15) in Result 14 and assuming that log SNR

SNR → 0,
the optimal error exponent for large SNR can be approximated according to

µ (s?)
SNR�1≈ c

2
(1− log SNR + log log(1 + SNR)) .
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4.3. The TKD case

In the TKD case, we recall that matrix Φ⊗ = Φ(Q) ⊗ . . .⊗Φ(1), with (φ(q))1≤q≤Q are Nq ×Mq

dimensional matrices. We still assume that matrices Φ
(q)
q=1,...,Q are random matrices with Gaussian

N (0, 1
Nq
) entries.

Result 15. In the asymptotic regime where Mq < Nq, 1 ≤ q ≤ Q and Mq, Nq converge towards +∞ at the

same rate such that Mq
Nq
→ cq, where 0 < cq < 1, it holds

µN(s)
N

a.s−→ µ(s) = c1 · · · cQ

[
1− s

2

∫ +∞

0
· · ·

∫ +∞

0
log(1 + SNR · λ1 · · · λQ)dνc1(λ1) · · · dνcQ(λQ)

− 1
2

∫ +∞

0
· · ·

∫ +∞

0
log(1 + (1− s)SNR · λ1 · · · λQ)dνc1(λ1) · · · dνcQ(λQ)

]
(16)

where νcq are Marchenko-Pastur distributions of parameters (cq, 1) defined as in eq. (1).

Proof. See Appendix 7.6.

Remark 16. We can notice that for Q = 1, the result 15 is similar to result 9. However, when Q ≥ 2, the
integrals in eq. (16) are not tractable in a closed-form expression. For instance, let Q = 2, we consider the
integral∫ +∞

−∞

∫ +∞

−∞
log(1 + SNR · λ1λ2)νc1(dλ1)νc2(dλ2)

=
∫ λ+

c1

λ−c1

∫ λ+
c2

λ−c2

log(1 + SNR · λ1λ2)

√(
λ1 − λ−c1

) (
λ+

c1 − λ1
)

2πc1λ1

√(
λ2 − λ−c2

) (
λ+

c2 − λ2
)

2πc2λ2
dλ1 dλ2

where λ±ci
= (1±√ci)

2, i = 1, 2. We can notice that this integral is characterized by elliptic integral (see e.g
[1]). As a consequence, it cannot be expressed in closed-form. However, numerical computations can be exploited
to solve efficiently the minimization problem of eq. (7).

4.3.1. Large SNR deviation scenario

Result 17. In case of large SNR, the minimizer of Chernoff Information for TKD is given by

s?
SNR�1≈ 1− 1

log SNR−Q−∑Q
i=1

1−ci
ci

log(1− ci)
. (17)

Proof. We have that

1
M

M

∑
n=1

log(λn) −→
Q

∑
q=1

∫ +∞

0
log(λq)dνcq(λq)

=
Q

∑
q=1

(
−1−

1− cq

cq
log(1− cq)

)

= −Q−
Q

∑
q=1

1− cq

cq
log(1− cq).

Using lemma 8, we get immediately (17).

4.3.2. Small SNR deviation scenario

Under this regime, we have the following results
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Result 18. For small SNR deviation, the Chernoff information for the TKD is given by

µ

(
1
2

)
δSNR�1≈ − (δSNR)2

16

Q

∏
q=1

cq · (1 + cq).

Proof. Using lemma 7, we can notice that

JF(0)
N

=
1
2

M
N

1
M

Tr
[
(Φ⊗(Φ⊗)T)2

]
=

1
2

M
N

Q

∏
q=1

Tr
[
(Φ(q)Φ(q)T

)2
]

Mq
.

Each term in the product converges a.s. towards the second moment of Marchenko-Pastur
distributions νcq which are 1 + cq and M

N converges to ∏Q
q=1 cq. This proves the desired result.

Remark 19. Contrary to the remark 13, it is interesting to note that for c1 = c2 = ... = cQ = c and c→ 0 or
1, the optimal s-value follows different approximated relation given by

s?
SNR�1≈

c→0
1− 1

log SNR

which does not depend on Q, and

s?
SNR�1≈

c→1
1− 1

log SNR−Q

which depends on Q.
In practice, when c is close to 1, we have to carefully check if Q is in the neighbourhood of log(SNR).

As we can see that, when log SNR− Q < 0 or 0 < log SNR− Q < 1, following the above approximation,
s? 6∈ [0, 1].

5. Numerical illustrations

In this simulation part, we consider cubic tensors of order Q = 3 with N1 = 10, N2 = 20, N3 =

30, R = 3000 following a CPD and M1 = 100, M2 = 120, M3 = 140, N1 = N2 = N3 = 200 for the TKD,
respectively.

Firstly, for the CPD model, in Fig. 4, it is drawn parameter s? with respect to the SNR in
dB. The parameter s? is obtained thanks to three different methods. The first one is based on the
brute force/exhaustive computation of the CUB by minimizing the expression in eq. (8) with Φ =

Φ�. This approach has a very high computational cost especially in our asymptotic context (for a
standard computer with Intel Xeon E5-2630 2.3GHz and 32GB RAM, it requires 183 hours to establish
10000 simulations). The second approach is based on the numerical optimization of the closed-form
expression of µ(s) given in Result 14. In this scenario, the drawback in terms of the computational cost
is largely mitigated since it consists of a minimization of an univariate regular function. Finally, under
the hypothesis that SNR is large, typically > 30 dB, the optimal s-value, s?, is derived by an analytic
expression given by eq. (15). We can check that the the proposed semi-analytic and analytic expressions
are in good agreement with the brute-force method for a lowest computational cost. Moreover, we

compute the mean square relative error 1
L ∑L

l=1(
ŝ?l −s?

s? )2 where L = 10000 the number of samples for
Monte-Carlo process and where ŝ?l = arg mins∈[0,1] µN,l(s) and s? = arg mins∈[0,1] µ(s). It turns out
that the mean square relative errors are in mean of order −40 dB. We can conclude that the estimator
ŝ? is a consistent estimator of s?.
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⋆

Numerical optimization of eq. (7) for eq. (8) with Φ = Φ
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Numerical optimization of eq. (7) for eq. (12)
Analytical expression eq. (14)

Figure 4. CPD scenario: Optimal s-parameter vs SNR in dB

In Fig. 5, we draw various s-divergences: µ
(

1
2

)
, µ(s?), 1

N µN

(
1
2

)
, 1

N µN(ŝ). We can observe the

good agreement with the proposed theoretical results. The s-divergence obtained by fixing s = 1
2 is

accurate only at small SNR but degrades when SNR grows large.
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⊙
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µN( 1

2)
N

in eq. (8) when Φ = Φ
⊙

µ
(

1
2

)

in eq. (12)

Figure 5. CPD scenario : s-divergence vs SNR in dB

In Fig. 6, we fixe SNR = 45 dB and draw s? obtained by eq. (14) versus values of c ∈
{10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 0.25, 0.5, 0.75, 0.9, 0.99} and the expression obtained by eq. (15).
The two curves approach each other as c goes to zero as predicted by our theoretical analysis.
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SNR −

1
log(1+SNR)

Figure 6. CPD scenario: s? vs c , SNR = 45 dB

For the TKD scenario, we follow the same methodology as above for CPD, Fig. 7 and Fig. 8 all
agree with the analysis provided in section 4.3.
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Figure 7. TKD scenario : Optimal s-parameter vs SNR in dB
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Figure 8. TKD scenario : s-divergence vs SNR in dB

For TKD scenario, the mean square relative error is in mean of order −40 dB. So, we check
numerically the consistency of the estimator of the optimal s-value.

We can also notice that the convergence of µN(s)
N towards its deterministic equivalent µ(s) in the

case TKD is faster than in the case CPD, since the dimension of matrix Φ⊗ is 200.200.200× 100.120.140
(N = 2003) which is much larger than the dimension 6000× 3000 of Φ� (N = 6000).

6. Conclusion

In this work, we derived and studied the limit performance in terms of minimal Bayes’ error
probability for the detection of high-dimensional random tensors using both the tools of Information
Geometry (IG) and of Random Matrix Theory (RMT). The main results on Chernoff Bounds and Fisher
Information are illustrated by Monte-Carlo simulations that corroborated our theoretical analysis.

For future work, we would like to study the rate of convergence and the fluctuation of the statistics
µN(s)

N and ŝ.

7. Appendix

7.1. Proof of Lemma 6

The s-divergence in eq. (6) for the following binary hypothesis test{
H0 : y ∼ N (0, Σ0) ,
H1 : y ∼ N (0, Σ1)

is given by [40]:

µN(s) =
1
2

log
det(sΣ0 + (1− s)Σ1)

[detΣ0]s[detΣ1]1−s . (18)

Using the expressions of the covariance matrices Σ0 and Σ1, the numerator in eq. (18) is given by

N log σ2 + log det
(

SNR · (1− s)ΦΦT + I
)
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and the two terms at its numerator are log[det Σ0]
s = sN log σ2 and

log[det Σ1]
1−s = (1− s)

(
N log σ2 + log det

(
SNR ·ΦΦT + I

) )
.

Using the above expressions, µN(s) is given by eq. (8).

7.2. Proof of Lemma 7

If we note dΣ(SNR) = ∂Σ(x)
∂x

∣∣∣
x=SNR

then the following expression holds:

Σ(δSNR) = Σ(0) + (δSNR) · dΣ(0) = I + (δSNR) ·ΦΦT .

Using the above expression, the s-divergence is given by

µN(s) =
1− s

2
log det

[
I + (δSNR) ·ΦΦT

]
− 1

2
log det

[
I + δSNR · (1− s) ·ΦΦT

]
Now, using eq. (8), and the following approximation:

1
N

log det(I + xA) =
1
N

Tr log(I + xA) ≈ x · 1
N

TrA− x2

2
· 1

N
TrA2

we obtain

µN(s)
N

≈ (s− 1)s · (δSNR)2

2
· JF(0)

N

where the Fisher information for y|δSNR ∼ N (0, Σ(δSNR)) is given by [34]:

JF(δSNR) = −E
[

∂2 log p(y|δSNR)
∂(δSNR)2

]
=

1
2

Tr{Σ(δSNR)−1dΣ(δSNR)Σ(δSNR)−1dΣ(δSNR)}

=
1
2

Tr((I + (δSNR) ·ΦΦT)−1ΦΦT(I + δSNR) ·ΦΦT)−1ΦΦT).

7.3. Proof of Theorem 8

The first step of the proof is based on the derivation of an alternative expression of µs(SNR) given
by eq. (18) involving the inverse of the covariance matrices Σ0 and Σ1. Specifically, we have

µs(SNR) =
1
2

log
(detΣ0)(detΣ1)det((1− s)Σ−1

0 + sΣ−1
1 )

[detΣ0]s[detΣ1]1−s

= −1
2

log
det

(
[(1− s)Σ−1

0 + sΣ−1
1 ]−1

)
[detΣ0]1−s[detΣ1]s

. (19)

The second step is to derive a closed-form expression in the high SNR regime using the following

the approximation (see [7] for instance):
(

x ·ΦΦT + I
)−1 x�1≈ Π⊥Φ = IN − ΦΦ† where Π⊥Φ is an

orthogonal projector such as Π⊥ΦΦ = 0 and Φ† = (ΦTΦ)−1ΦT . The numerator in eq. (19) is given by[
(1− s)Σ−1

0 + sΣ−1
1

]−1 SNR�1≈ σ2
(

IN − sIN + sΠ⊥Φ

)−1

= σ2
(

IN − sΦΦ†
)−1

.
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As sΦΦ† is a rank-K projector matrix scaled by factor s > 0, its eigen-spectrum is given by{
s, . . . , s︸ ︷︷ ︸

K

, 0, . . . , 0︸ ︷︷ ︸
N−K

}
. In addition, as the rank-N identity matrix and the scaled projector sΦΦ† can

be diagonalized in the same orthonormal basis matrix, the n-th eigenvalue of the inverse of matrix
IN − sΦΦ† is given by

λn

{(
IN − sΦΦ†

)−1
}

=
1

λn {IN} − sλn

{
ΦΦ†

}
=

{
1

1−s , 1 ≤ n ≤ K,
1, K + 1 ≤ n ≤ N

with s ∈ (0, 1). Using the above property, we obtain

log det
(
[IN − sΦΦ†]−1

)
= log

N

∏
n=1

λn

{(
IN − sΦΦ†

)−1
}

= −K log(1− s).

In addition, we have

log det
(

SNR ·ΦΦT + I
) SNR�1≈ Tr log

(
SNR ·ΦTΦ

)
= K · log SNR +

K

∑
n=1

log λn

Finally, thanks to eq. (19), we have

µs(SNR)
N

SNR�1≈ 1
2

K
N

(
log(1− s) + s · log SNR +

s
K

K

∑
n=1

log λn

)

Finally, to obtain s? in eq. (9), we solve ∂µs(SNR)
∂s = 0.

7.4. Proof of Result 9

Large random matrix theory allows to evaluate the asymptotic behavior of µN(s)
N when Nq → +∞

for each q = 1, . . . , Q, R→ +∞ in such a way that R1/q

Nq
converge towards a non zero constant for each

q = 1, . . . , Q. In other words, N1, . . . , NQ converge towards +∞ at the same rate (i.e. Nq
Np

converge

towards a non zero constant for each (p, q)), and cR = R
N converges towards a constant c > 0. In

this context, the empirical eigenvalue distribution of matrix Φ�(Φ�)T converges towards a relevant
Marcenko-Pastur distribution. More precisely, we define the Marcenko-Pastur distribution νc(dλ) as
the probability distribution given by

νc(dλ) = δ(λ) [1− c]+ +

√(
λ− λ−c

) (
λ+

c − λ
)

2πλ
1[λ−c ,λ+

c ](λ) dλ

where λ−c = (1−
√

c)2 and λ+
c = (1 +

√
c)2. The Stieltjes transform of νc defined as tc(z) =

∫
R+

νc(dλ)
λ−z

is known to satisfy the equation

tc(z) =
[
−z +

c
1 + tc(z)

]−1
.
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When z ∈ R−∗, i.e. z = −ρ, with ρ > 0, it is well known that tc(ρ) is given by

tc(−ρ) =
2

ρ− (1− c) +
√
(ρ + λ−c )(ρ + λ+

c )
(20)

It was established for the first time in [38] that if X represents a K × P random matrix with zero
mean and 1

K variance i.i.d. entries, and if (λk)k=1,...,K represent the eigenvalues of XXT arranged in
decreasing order, then the so-called empirical eigenvalue distribution of XXT defined as 1

K ∑K
k=1 δ(λ−

λk) converges weakly almost surely towards νc in the asymptotic regime where K → +∞, P→ +∞,
P
K → c. In particular, for each continuous function f (λ), it holds that

1
K

K

∑
k=1

f (λk)
a.s−→

∫
R+

f (λ) νc(dλ). (21)

In practice, this result means that if K and P are large enough, then the histogram of the eigenvalues of
each realization of XXT tends to accumulate around the graph of the probability density of νc.
The columns (φr)r=1,...,R of Φ� are vectors (φ

(Q)
r ⊗ . . . ⊗ φ

(1)
r )r=1,...,R. These vectors are mutually

independent, identically distributed, and satisfy E(φrφT
r ) =

IN
N . However, the elements of Φ� are

not mutually independent because the components of each column φr are not independent. In the
asymptotic regime considered in this paper, the results of [44] (see also [3]) allow to establish that the
empirical eigenvalue distribution of Φ�(Φ�)T still converges almost surely towards νc, where we
recall that R

N → c. Using (21) for f (λ) = log(1 + λ/ρ) as well as a well-known formula that allows to
express

∫
R+ log(1 + λ/ρ) νc(dλ) in terms of tc(−ρ) given by (20) (see e.g. [50]), we obtain the result.

7.5. Proof of Result 14

We have u(x)
c�1≈ 1

x +
√
( 1

x + 1)2 = 2
x + 1 and u(x) + (1− c)

c�1≈ 2
(

1
x + 1

)
, u(x)− (1− c)

c�1≈ 2
x ,

u(x)2 − (1− c)2 c�1≈ 4
x

(
1
x + 1

)
. Using the above first-order approximations, eq. (13) is

Ψc�1 (x)
1≈ c · x

1 + x
+ c log(1 + x)− c

x
1 + x

= c log(1 + x).

Using the above approximation and eq. (12), we obtain Result 14.

7.6. Proof of Result 15

We first denote λ
(q)
1 ≥ λ

(q)
2 ≥ ... ≥ λ

(q)
nq ≥ ... ≥ λ

(q)
Nq

the eigenvalues of Φ(q)(Φ(q))T , 1 ≤ nq ≤ Nq,

for 1 ≤ q ≤ Q. We can notice that the eigenvalues of Φ⊗(Φ⊗)T are λ
(1)
n1 · · · λ

(Q)
nQ . Moreover, in the

asymptotic regime, where Mq → +∞, Nq → +∞ such that Mq
Nq
→ cq, 0 < cq < 1, for all 1 ≤ q ≤ Q, we

have that λ
(q)
nq = 0 if Mq + 1 ≤ nq ≤ Nq and the empirical distribution of the eigenvalues (λ(q)

nq )1≤nq≤Mq

behaves as Marchenko-Pastur distributions νcq of parameters (cq, 1). Recalling that M = M1...MQ,
N = N1...NQ, we obtain immediately that

1
N

log det
(

SNR ·Φ⊗(Φ⊗)T + I
)
=

1
N

N1

∑
n1=1

...
NQ

∑
nq=1

log
(

SNR · λ(1)
n1 · · · λ

(Q)
nQ + 1

)

=
M
N

1
M

M1

∑
n1=1

...
MQ

∑
nq=1

log
(

SNR · λ(1)
n1 · · · λ

(Q)
nQ + 1

)
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and that

1
M

M1

∑
n1=1

...
MQ

∑
nq=1

log
(

SNR · λ(1)
n1 · · · λ

(Q)
nQ + 1

)
a.s−→

∫ +∞

0
...
∫ +∞

0
log(1+SNR ·λ1...λQ)dνc1(λ1)...dνcQ(λQ)

Similarly, we have that

1
M

log det
(

SNR · (1− s)Φ⊗(Φ⊗)T + I
)

a.s−→
∫ +∞

0
...
∫ +∞

0
log(1 + SNR · (1− s)λ1...λQ)dνc1(λ1)...dνcQ(λQ)

We obtain easily result 15.
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