Preprint Article Version 1 This version not peer reviewed

The Role of NWP Filter for the Satellite Based Detection of Cumulonimbus Clouds

Version 1 : Received: 29 November 2017 / Approved: 30 November 2017 / Online: 30 November 2017 (07:37:21 CET)

How to cite: Mülller, R.; Haussler, S.; Jerg, M. The Role of NWP Filter for the Satellite Based Detection of Cumulonimbus Clouds. Preprints 2017, 2017110194 (doi: 10.20944/preprints201711.0194.v1). Mülller, R.; Haussler, S.; Jerg, M. The Role of NWP Filter for the Satellite Based Detection of Cumulonimbus Clouds. Preprints 2017, 2017110194 (doi: 10.20944/preprints201711.0194.v1).

Abstract

The study investigates the role of NWP filtering for the remote sensing of Cumulonimbus Clouds (Cbs) by implementation of 14 different experiments, covering Central Europe. These experiments compiles different stability filter settings as well as the use of different channels for the InfraRed (IR) brightness temperatures. As stability filter parameters from Numerical Weather Prediction (NWP) are used. The brightness temperature information results from the IR SEVIRI instrument on-board of Meteosat Second Generation satellite and enables the detection of very cold and high clouds close to the tropopause. The satellite only approaches (no NWP filtering) result in the detection of Cbs with a relative high probability of detection, but unfortunately combined with a large False Alarm Rate (FAR), leading to a Critical Success Index (CSI) below 60 %. The false alarms results from other types of very cold and high clouds. It is shown that the false alarms can be significantly decreased by application of an appropriate NWP stability filter, leading to the increase of CSI to about 70 % . A brief review and reflection of the literature clarifies that the this function of the NWP filter can not be replaced by MSG IR spectroscopy. Thus, NWP filtering is strongly recommended to increase the quality of satellite based Cb detection. Further, it has been shown that the well established convective available potential energy (CAPE) and the convection index (KO) works well as stability filter.

Subject Areas

cumulonimbus; thunderstorms; stability filter; aviation

Readers' Comments and Ratings (0)

Leave a public comment
Send a private comment to the author(s)
Rate this article
Views 0
Downloads 0
Comments 0
Metrics 0
Leave a public comment

×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.