Preprint
Article

This version is not peer-reviewed.

Information Entropy Production of Maximum Entropy Markov Chains from Spike Trains

A peer-reviewed article of this preprint also exists.

Submitted:

07 November 2017

Posted:

08 November 2017

You are already at the latest version

Abstract
Experimental recordings of the collective activity of interacting spiking neurons exhibit random behavior and memory effects, thus the stochastic process modeling the spiking activity is expected to show some degree of time irreversibility. We use the thermodynamic formalism to build a framework, in the context of spike train statistics, to quantify the degree of irreversibility of any parametric maximum entropy measure under arbitrary constraints, and provide an explicit formula for the information entropy production of the inferred Markov maximum entropy process. We provide examples to illustrate our results and discuss the importance of time irreversibility for modeling the spike train statistics.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated