Mining for resources extraction may lead to several geological and associated environmental changes due to ground movements, collision with mining cavities and deformation of aquifers. Geological changes may continue in a reclaimed mine area, and the deformed aquifers may entail a breakdown of substrates and an increase in ground water tables, which may cause surface area inundation. Consequently, a reclaimed mine area may experience surface area collapse, i.e. subsidence, and degradation of vegetation health. Thus, monitoring short-term landscape dynamics in a reclaimed mine area may provide important information on the long-term geological and environmental impacts of mining activities. We studied landscape dynamics in Kirchheller Heide, Germany, which experienced extensive soil movement due to longwall mining without stowing, using Landsat imageries between 2013 and 2016. A Random Forest image classification technique was applied to analyse land-use and land-cover dynamics and the growth of wetland areas was assessed using a Spectral Mixture Analysis (SMA). We also analyzed the changes in vegetation health using a Normalized Difference Vegetation Index (NDVI). We observed a 19.9% growth of wetland area within the four years with 87.2% of growth in the coverage of two major waterbodies in the reclaimed mine area. NDVI values indicate that 66.5% of the vegetation of the study area was degraded due to changes in ground water tables and surface flooding. Our results inform environmental management and mining reclamation authorities about the subsidence spots and priority mitigation areas from land surface and vegetation degradation in Kirchheller Heide.