Preprint
Article

This version is not peer-reviewed.

Effects of Fluoride on Two Chemical Models of Enamel Demineralization

A peer-reviewed article of this preprint also exists.

Submitted:

21 October 2017

Posted:

22 October 2017

You are already at the latest version

Abstract
This study evaluated the effects of fluoride on subsurface enamel demineralization induced by two commonly used chemical models. Forty-eight enamel blocks were demineralized at pH = 5.0 by an acetate buffer (Group 1), a lactate buffer (Group 2), an acetate buffer with 0.02 ppm fluoride (Group 3) and a lactate buffer with 0.02 ppm fluoride (Group 4) at 25 °C for 3 weeks. The surface destruction percentage (SDP), mineral loss and lesion depth of the blocks were studied using micro-computed tomography. An elemental analysis of the enamel surface was evaluated using an energy-dispersive X-ray spectroscopy. Surface micro-hardness was determined by the Knoop Hardness Test. The mean lesion depth of Groups 1 through 4 were 134.1 ± 27.2 µm, 96.1 ± 16.5 µm, 97.5 ± 22.4 µm and 91.1 ± 16.2 µm, respectively (p < 0.05; group 1 > 2, 3 > 4). The SDPs of groups 1 through 4 were 7.8 ± 8.93%, 0.71 ± 1.6%, 0.36 ± 1.70% and 1.36 ± 2.94% (p < 0.01; group 1 > 2, 3, 4). The fluoride in mean weight percentages of groups 1 through 4 were 1.12 ± 0.24%, 1.10 ± 0.20%, 1.45 ± 0.40% and 1.51 ± 0.51%, respectively (p < 0.01; group 3,4 > 1,2). The mean Knoop hardness values of groups 1 through 4 were 27.5 ± 13.3, 39.7 ± 19.3, 73.6 ± 44.2 and 91.0 ± 57.2, respectively (p < 0.01; group 4 > 3 > 2 > 1). The chemical model using an acetate buffer solution created significantly deeper zones of subsurface demineralization on enamel than the lactate buffer solution. An acetate buffer may damage the enamel surface, but the surface damage can be prevented by adding fluoride.
Keywords: 
;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated