Preprint
Article

The Cosmological Constant Problem and Quantum Spacetime Reference Frame

This version is not peer-reviewed.

Submitted:

02 November 2017

Posted:

02 November 2017

Read the latest preprint version here

Abstract
We generalize the idea of quantum clock time to quantum spacetime reference frame via physical realization of a reference system by quantum rulers and clocks. Omitting the internal degrees of freedom (such as spins) of the physical rulers and clocks, only considering their metric properties, the spacetime reference frame is described by a bosonic non-linear sigma model. We study the quantum behavior of the system under approximations, and obtain (1) a cosmological constant valued (2)ρc0 (ρc0 the critical density at near current epoch) which is very close to the observations; (2) an effective Einstein-Hilbert term in the effective action; (3) the ratio of variance to mean-squared of spacetime interval tends to a universal constant 2in the infrared region. This effect is testable by observing a linear dependence between the inherent quantum variance and mean-squared of the redshifts from cosmic distant spectral lines. The proportionality is expected to be the observed percentage of the dark energy. We also generalize the equivalence principle to be valid for all quantum phenomenon.
Keywords: 
cosmological constant problem; non-linear sigma model; quantum gravity
Subject: 
Physical Sciences  -   Quantum Science and Technology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Altmetrics

Downloads

1640

Views

1304

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated