Preprint
Article

This version is not peer-reviewed.

Variance Inflation Factor-Based Forward-Selection Method for Water-Quality Estimation via Combining Landsat TM, ETM+, and OLI/TIRS Images and Ancillary Environmental Data

A peer-reviewed article of this preprint also exists.

Submitted:

16 October 2017

Posted:

17 October 2017

You are already at the latest version

Abstract
A simple approach to enable water-management agencies employing free data to achieve the goal of using a single set of predictive equations for water-quality retrievals with satisfactory accuracy is proposed. Multiple regression-derived equations based on surface reflectance, band ratios, and environmental factors as predictor variables for concentrations of Total Suspended Solids (TSS), Total Nitrogen (TN), and Total Phosphorus (TP) were derived using a hybrid forward-selection method that considers Variance Inflation Factor (VIF) in the forward-selection process. Landsat TM, ETM+, and OLI/TIRS images were jointly utilized with environmental factors, such as wind speed and water surface temperature, to derive the single set of equations. The coefficients of determination of the best-fitting resultant equations varied from 0.62 to 0.79. Among all chosen predictor variables, ratio of reflectance of visible red (Band 3 for Landsat TM and ETM+, or Band 4 for Landsat OLI/TIRS) to visible blue (Band 1 for Landsat TM and ETM+, or Band 2 for Landsat OLI/TIRS) has a strong influence on the predictive power for TSS retrieval. Environmental factors including wind speed, remote sensing-derived water surface temperature, solar altitude, and time difference (in days) between the image acquisition and water sampling were found important in water-quality parameter estimation.
Keywords: 
;  ;  ;  ;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated