Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Novel Semi-parametric Algorithm for Interference-immune Tunable Absorption Spectroscopy Gas Sensing

Version 1 : Received: 10 September 2017 / Approved: 11 September 2017 / Online: 11 September 2017 (04:42:08 CEST)

A peer-reviewed article of this Preprint also exists.

Michelucci, U.; Venturini, F. Novel Semi-Parametric Algorithm for Interference-Immune Tunable Absorption Spectroscopy Gas Sensing. Sensors 2017, 17, 2281. Michelucci, U.; Venturini, F. Novel Semi-Parametric Algorithm for Interference-Immune Tunable Absorption Spectroscopy Gas Sensing. Sensors 2017, 17, 2281.

Abstract

One of the most common limits to gas sensor performance is the presence of unwanted interference fringes or etalons arising, for example, from multiple reflections between surfaces in the optical path. Additionally, since the amplitude and the frequency of these interference depend on the distance and alignment of the optical elements, they are affected by temperature changes and mechanical disturbances, giving rise to a drift of the signal. In this work, we present a novel semi-parametric algorithm which allows the extraction of a signal, like the spectroscopic absorption line of a gas molecule, from a background containing arbitrary disturbances, without having to make any assumption on the functional form of these disturbances. The algorithm is applied first to simulated data and then to oxygen absorption measurements in presence of strong fringes.To the best of the authors' knowledge, the algorithm enables an unprecedented accuracy particularly if the fringes have a free spectral range and amplitude comparable to those of the signal to be detected. The described method presents the advantage of being based purely on post processing, and to be of extremely straightforward implementation if the functional form of the Fourier transform of the signal is known. Therefore it has the potential to enable interference-immune absorption spectroscopy. Finally, its relevance goes beyond absorption spectroscopy for gas sensing since it can be applied to any kind of spectroscopic data.

Keywords

interference; interference cancellation; noise reduction; digital filtering; spectroscopy; sensors

Subject

Physical Sciences, Optics and Photonics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.