Preprint Article Version 1 This version is not peer-reviewed

Investigation of Effective Modification Treatments for Thin Titanium Membranes

Version 1 : Received: 4 September 2017 / Approved: 4 September 2017 / Online: 4 September 2017 (18:25:01 CEST)

A peer-reviewed article of this Preprint also exists.

Kobatake, R.; Doi, K.; Oki, Y.; Umehara, H.; Kawano, H.; Kubo, T.; Tsuga, K. Investigation of Effective Modification Treatments for Titanium Membranes. Appl. Sci. 2017, 7, 1022. Kobatake, R.; Doi, K.; Oki, Y.; Umehara, H.; Kawano, H.; Kubo, T.; Tsuga, K. Investigation of Effective Modification Treatments for Titanium Membranes. Appl. Sci. 2017, 7, 1022.

Journal reference: Appl. Sci. 2017, 7, 1022
DOI: 10.3390/app7101022

Abstract

Titanium membranes are used for guided bone regeneration in implant therapy. However, as a bioinert material, titanium does not have the ability to accelerate bone formation. Various titanium surface treatments to confer bioactivity have been demonstrated; however, there are concerns about the influence of chemical treatments on the corrosion of thin titanium membranes. This study investigated the influence of surface modifications on the structure of thin titanium membranes. Titanium membranes of 20 µm thickness were treated with acid or alkali solutions, and we evaluated their surface structure, wettability, corrosion depth, and mechanical strength compared to non-treated membranes. Alkali-treated thin titanium membranes displayed the formation of nanoscale pore structures on their surfaces, enhanced hydrophilicity, and less corrosion depth compared with acid-treated membranes. Furthermore, the tensile strength of alkali-treated membranes was comparable to non-treated membranes. These results suggest that alkali treatment is an appropriate surface modification method for thin titanium membranes.

Subject Areas

GBR; membrane; surface modification

Readers' Comments and Ratings (0)

Leave a public comment
Send a private comment to the author(s)
Rate this article
Views 0
Downloads 0
Comments 0
Metrics 0
Leave a public comment

×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.