Preprint
Article

This version is not peer-reviewed.

On the Anisotropic Mechanical Properties of Selective Laser Melted Stainless Steel

A peer-reviewed article of this preprint also exists.

Submitted:

18 August 2017

Posted:

18 August 2017

You are already at the latest version

Abstract
The thorough description of the peculiarities of additively manufactured structures represents a current challenge for aspiring freeform fabrication methods, such as the selective laser melting (SLM). All of which have an immense advantage in the fast fabrication (no special tooling or moulds required), the geometrical flexibility in the design of components, and their efficiency when only low quantities are required. However, designs demand the precise knowledge of the material properties, which in case of additively manufactured structures are anisotropic and, under certain circumstances, in addition of an inhomogeneous nature. Furthermore, these characteristics are highly dependent on the fabrication settings. Within this study, the anisotropic tensile properties of selective laser melted stainless steel (1.4404, 316L) are investigated: The Young’s modulus ranged from 148 GPa to 227 GPa, the ultimate tensile strength from 512 MPa to 699 MPa and the breaking elongation ranged, respectively, from 12% to 43%. The results were compared to related studies, in order to classify the influence of the fabrication settings. Furthermore, the influence of the chosen raw material was addressed by comparing deviations on the directional dependencies reasoned by differing microstructural developments during manufacture. Stainless steel was found to possess its maximum strength at a 45° layer versus loading offset, which is precisely where AlSi10Mg was previously reported to be at its weakest.
Keywords: 
;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated