Given a stream of depth images with a known cuboid reference object present in the scene, we propose a novel approach for accurate camera tracking and volumetric surface reconstruction in real-time. Our contribution in this paper is threefold: (a) utilizing a priori knowledge of the cuboid reference object, we keep drift-free camera tracking without explicit global optimization; (b) we improve the fineness of the volumetric surface representation by proposing a prediction-corrected data fusion strategy rather than simple moving average, which enables accurate reconstruction of high-frequency details such as sharp edges of objects and geometries of high curvature; (c) we introduce a benchmark dataset CU3D containing both synthetic and real-world scanning sequences with ground-truth camera trajectories and surface models for quantitative evaluation of 3D reconstruction algorithms. We test our algorithm on our dataset and demonstrate its accuracy compared with other state-of-the-art algorithms. We release both our dataset and code as opensource1 for other researchers to reproduce and verify our results.