Preprint
Article

CuFusion: Accurate Real‐time Camera Tracking and Volumetric Scene Reconstruction with a Cuboid

This version is not peer-reviewed.

Submitted:

06 August 2017

Posted:

07 August 2017

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
Given a stream of depth images with a known cuboid reference object present in the scene, we propose a novel approach for accurate camera tracking and volumetric surface reconstruction in real-time. Our contribution in this paper is threefold: (a) utilizing a priori knowledge of the cuboid reference object, we keep drift-free camera tracking without explicit global optimization; (b) we improve the fineness of the volumetric surface representation by proposing a prediction-corrected data fusion strategy rather than simple moving average, which enables accurate reconstruction of high-frequency details such as sharp edges of objects and geometries of high curvature; (c) we introduce a benchmark dataset CU3D containing both synthetic and real-world scanning sequences with ground-truth camera trajectories and surface models for quantitative evaluation of 3D reconstruction algorithms. We test our algorithm on our dataset and demonstrate its accuracy compared with other state-of-the-art algorithms. We release both our dataset and code as opensource1 for other researchers to reproduce and verify our results.
Keywords: 
real‐time reconstruction; SLAM; kinect sensors; depth cameras; open source
Subject: 
Computer Science and Mathematics  -   Computer Science
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Altmetrics

Downloads

1138

Views

1031

Comments

3

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated