Preprint Review Version 1 Preserved in Portico This version is not peer-reviewed

Possible Reactions of Dietary Phenolic Compounds with Salivary Nitrite and Thiocyanate in the Stomach

Version 1 : Received: 27 June 2017 / Approved: 28 June 2017 / Online: 28 June 2017 (07:41:14 CEST)

A peer-reviewed article of this Preprint also exists.

Takahama, U.; Hirota, S. Possible Reactions of Dietary Phenolic Compounds with Salivary Nitrite and Thiocyanate in the Stomach. Antioxidants 2017, 6, 53. Takahama, U.; Hirota, S. Possible Reactions of Dietary Phenolic Compounds with Salivary Nitrite and Thiocyanate in the Stomach. Antioxidants 2017, 6, 53.

Abstract

Foods are mixed with saliva in the oral cavity and swallowed. During staying in the stomach, saliva is contentiously provided to mix with the ingested foods. Because a salivary component nitrite is protonated to produce active nitrous acid at acidic pH, the redox reactions of nitrous acid with phenolic compounds in foods become possible in the stomach. In the reactions, nitrous acid is reduced to nitric oxide (•NO), producing various products from phenolic compounds. In the products, stable hydroxybezoyl benzofuranone derivatives, which are produced from quercetin and its 7-O-glucoside, are included. Caffeic acid, chlorogenic acid, and rutin are oxidized to quinones and the quinones can react with thiocyanic acid derived from saliva producing stable oxathiolone derivatives. 6,8-Dinitrosocatechis are produced from catechins by the redox reaction, and the dinitrocatechins are oxidized further by nitrous acid producing the quinones, which can make charge transfer complexes with the dinitrosocatechin and can react with thiocyanic acid producing the stable thiocyanate conjugates. In this way, various products can be produced by the reactions of salivary nitrite with dietary phenolic compounds, and reactive and toxic quinones formed by the reactions are postulated to be removed in the stomach by thiocyanic acid derived from saliva.

Keywords

flavonoids; nitric oxide (•NO); nitrosation; nitrous acid; quinones; redox reactions; stomach; thiocyanic acid.

Subject

Biology and Life Sciences, Biochemistry and Molecular Biology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.