Preprint Technical Note Version 1 Preserved in Portico This version is not peer-reviewed

Electrochemical Chloride Extraction and Inhibitor Injection in Salt-Contaminated Repair Mortar

Version 1 : Received: 16 June 2017 / Approved: 19 June 2017 / Online: 19 June 2017 (13:40:09 CEST)

A peer-reviewed article of this Preprint also exists.

Gong, J.; Shen, Z.; Tong, Y.; Li, Z.; Shi, X. Electrochemical Chloride Extraction and Inhibitor Injection in Salt-Contaminated Repair Mortar. International Journal of Electrochemical Science 2018, 13, 498–513, doi:10.20964/2018.01.35. Gong, J.; Shen, Z.; Tong, Y.; Li, Z.; Shi, X. Electrochemical Chloride Extraction and Inhibitor Injection in Salt-Contaminated Repair Mortar. International Journal of Electrochemical Science 2018, 13, 498–513, doi:10.20964/2018.01.35.

Abstract

Repair mortar is commonly used to rehabilitate reinforced concrete structures or components that exhibit a relatively high level of distresses. Yet, this repair mortar can be contaminated by salt from its service environment. This work employs a two-dimensional finite element model to investigate the transport behavior of ionic species in salt-contaminated and water-saturated repair mortar under an externally applied electric field. The model was experimentally validated and then utilized to evaluate the effectiveness of electrochemical chloride extraction (ECE) with or without electrical injection of corrosion inhibitor (EICI). In the case study, both the ECE alone and the ECE+EICI treatment was found effective in decontaminating the zone in front of the steel rebar. In both techniques, the magnitude of current density has a significant effect on removing chloride out of the mortar and increasing the pH of the pore solution near the rebar, whereas the treatment time any not have a significant effect under some scenarios. The injection of the organic corrosion inhibitor significantly slowed down the removal of chloride. Changes in the ionic distribution in the mortar were generally beneficial in reducing the corrosion risk of the steel rebar and thus extending the service life of the repair mortar.

Keywords

finite element modeling; electrochemical chloride extraction (ECE); electrical injection of corrosion inhibitor (EICI); rebar corrosion; repair mortar

Subject

Engineering, Civil Engineering

Comments (2)

Comment 1
Received: 25 February 2018
The commenter has declared there is no conflict of interests.
Comment: The final and updated version of this is available at:
http://www.electrochemsci.org/papers/vol13/130100498.pdf
+ Respond to this comment
Response 1 to Comment 1
Received: 25 February 2018
The commenter has declared there is no conflict of interests.
Comment: How to cite:
Gong, J., Shen, Z., Tong, Y., Li, Z., Shi, X. Electrochemical Chloride Extraction and
Inhibitor Injection in Salt-Contaminated Repair Mortar. International Journal of
Electrochemical Science, 2018, 13(1), 498-513, DOI: 10.20964/2018.01.35.

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 2
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.