Preprint
Article

RESPIRE: A Spectral Kurtosis-based Method to Extract Respiration Rate from Wearable PPG Signals

Altmetrics

Downloads

1175

Views

601

Comments

0

This version is not peer-reviewed

Submitted:

16 June 2017

Posted:

16 June 2017

You are already at the latest version

Alerts
Abstract
In this paper, we present the design of a wearable photoplethysmography (PPG) system, R-band for acquiring the PPG signals. PPG signals are influenced by the respiration or breathing process and hence can be used for estimation of respiration rate. R-Band detects the PPG signal that is routed to a Bluetooth low energy device such as a nearbyplaced smartphone via microprocessor. Further, we developed an algorithm based on Extreme Learning Machine (ELM) regression for the estimation of respiration rate. We proposed spectral kurtosis features that are fused with the state-ofthe-art respiratory-induced amplitude, intensity and frequency variations-based features for the estimation of respiration rate (in units of breaths per minute). In contrast to the neural network (NN), ELM does not require tuning of hidden layer parameter and thus drastically reduces the computational cost as compared to NN trained by the standard backpropagation algorithm. We evaluated the proposed algorithm on Capnobase data available in the public domain.
Keywords: 
Subject: Engineering  -   Bioengineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated