Preprint Review Version 1 This version is not peer-reviewed

On-chip High-finesse Fabry-Perot Microcavities for Optical Sensing and Quantum Information

Version 1 : Received: 15 June 2017 / Approved: 16 June 2017 / Online: 16 June 2017 (10:38:57 CEST)

A peer-reviewed article of this Preprint also exists.

Bitarafan, M.H.; DeCorby, R.G. On-Chip High-Finesse Fabry-Perot Microcavities for Optical Sensing and Quantum Information. Sensors 2017, 17, 1748. Bitarafan, M.H.; DeCorby, R.G. On-Chip High-Finesse Fabry-Perot Microcavities for Optical Sensing and Quantum Information. Sensors 2017, 17, 1748.

Journal reference: Sensors 2017, 17, 1748
DOI: 10.3390/s17081748

Abstract

For applications in sensing and cavity-based quantum computing and metrology, open-access Fabry-Perot cavities – with an air or vacuum gap between a pair of high reflectance mirrors – offer important advantages compared to other types of microcavities. For example, they are inherently tunable using MEMS-based actuation strategies, and they enable atomic emitters or target analytes to be located at high field regions of the optical mode. Integration of curved-mirror Fabry-Perot cavities on chips containing electronic, optoelectronic, and optomechanical elements is a topic of emerging importance. Micro-fabrication techniques can be used to create mirrors with small radius-of-curvature, which is a prerequisite for cavities to support stable, small-volume modes. We review recent progress towards chip-based implementation of such cavities, and highlight their potential to address applications in sensing and cavity quantum electrodynamics.

Subject Areas

Fabry-Perot microcavities; sensing; cavity QED; microcavity lasers

Readers' Comments and Ratings (0)

Leave a public comment
Send a private comment to the author(s)
Rate this article
Views 0
Downloads 0
Comments 0
Metrics 0
Leave a public comment

×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.