Preprint
Article

This version is not peer-reviewed.

Assessing Probabilistic Inference by Comparing the Generalized Mean of the Model and Source Probabilities

A peer-reviewed article of this preprint also exists.

Submitted:

31 May 2017

Posted:

01 June 2017

You are already at the latest version

Abstract
An approach to the assessment of probabilistic inference is described which quantifies the performance on the probability scale. From both information and Bayesian theory, the central tendency of an inference is proven to be the geometric mean of the probabilities reported for the actual outcome and is referred to as the “Accuracy.” Upper and lower error bars on the accuracy are provided by the arithmetic mean and the -2/3 mean. The arithmetic is called the “Decisiveness” due to its similarity with the cost of a decision and the -2/3 mean is called the “Robustness”, due to its sensitivity to outlier errors. Visualization of inference performance is facilitated by plotting the reported model probabilities versus the histogram calculated source probabilities. The visualization of the calibration between model and source is summarized on both axes by the arithmetic, geometric, and -2/3 means. From information theory, the performance of the inference is related to the cross-entropy between the model and source distribution. Just as cross-entropy is the sum of the entropy and the divergence; the accuracy of a model can be decomposed into a component due to the source uncertainty and the divergence between the source and model. Translated to the probability domain these quantities are plotted as the average model probability versus the average source probability. The divergence probability is the average model probability divided by the average source probability. When an inference is over/under-confident, the arithmetic mean of the model increases/decreases, while the -2/3 mean decreases/increases, respectively.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated