Preprint
Article

Adaptive Grouping Distributed Compressive Sensing Reconstruction of Plant Hyperspectral Data

Altmetrics

Downloads

787

Views

714

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

06 May 2017

Posted:

08 May 2017

You are already at the latest version

Alerts
Abstract
With the development of hyperspectral technology, to establish an effective spectral data compressive reconstruction method that can improving data storage, transmission and maintaining spectral information is critical for quantitative remote sensing research and application in vegetation. By introducing the idea of compressive sensing in compressed reconstruction, the spectral adaptive grouping distributed compressive sensing algorithm is proposed, which enables a distributed compressed sensing reconstruction of plant hyperspectral data. The experimental results showed that comparing with orthogonal matching pursuit(OMP) and gradient projection reconstruction(GPSR), the proposed algorithm can significantly improve the visual effect of image reconstruction in the spatial domain. The PSNR in low sampling rate(sampling rate is lower than 0.2) increases by 13.72dB than OMP and 1.66dB than GPSR. In the spectral domain, the average normalized root mean square error、the mean absolute percentage error and the mean absolute error of the proposed algorithm is35.38%,31.83% and 33.33% lower than GPSR respectively.. Therefore, the proposed algorithm can achieve relatively high reconstructed efficiency.
Keywords: 
Subject: Environmental and Earth Sciences  -   Remote Sensing
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated