Preprint
Article

This version is not peer-reviewed.

Elastic Charging Service Fee Based Load Guiding Strategy for Fast Charging Station

A peer-reviewed article of this preprint also exists.

Submitted:

20 April 2017

Posted:

20 April 2017

You are already at the latest version

Abstract
Compared with the traditional slow charging loads, random integration of large scale fast charging loads will exert more serious impacts on the security of power network operation. Besides, to maximize social benefits, effective scheduling strategy guiding fast charging behaviors should be formulated rather than simply increasing infrastructure construction investments on the power grid. This paper has analyzed the charging users’ various responses to the elastic charging service fee, introduced the index of charging balance degree to a target region by considering the influence of fast charging loads on power grid. Then, a multi-objective optimization model of the fast charging service fee is constructed, whose service fee can be further optimized by employing fuzzy programming method. Therefore, both users’ satisfaction degree and the equilibrium of charging loads can be maintained simultaneously by guiding EVs to different fast charging stations reasonably. The simulation results demonstrate the effectiveness of proposed dynamic charging service pricing and the proposed fast charging load guidance strategy.
Keywords: 
;  ;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated