Preprint
Article

Hybrid Subtractive-Additive-Welding Microfabrication for Lab-on-Chip (LOC) Applications via Single Amplified Femtosecond Laser Source

Submitted:

13 April 2017

Posted:

13 April 2017

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
An approach employing ultrafast laser hybrid subtractive-additive microfabrication combining ablation, 3D nanolithography and welding is proposed for the realization of Lab-On-Chip (LOC) device. Single amplified Yb:KGW fs-pulsed laser source is shown to be suitable for fabricating microgrooves in glass slabs, polymerization of fine-meshes filter out of hybrid organic-inorganic photopolymer SZ2080 inside them, and, lastly, sealing the whole chip with cover glass into a single monolithic piece. The created microfluidic device proved its particle sorting function by separating 1 μm and 10 μm polystyrene spheres in a mixture. All together, this shows that fs-laser microfabrication technology is a flexible and versatile tool for the manufacturing of mesoscale multi-material LOC devices.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

1540

Views

1391

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated