Preprint Article Version 1 NOT YET PEER-REVIEWED

Evaluation of the Effects of Airborne Particulate Matter on Bone Marrow-Mesenchymal Stem Cells (BM-MSCs): Cellular, Molecular and Systems Biological Approaches

Version 1 : Received: 20 March 2017 / Approved: 20 March 2017 / Online: 20 March 2017 (16:33:56 CET)

A peer-reviewed article of this Preprint also exists.

Abu-Elmagd, M.; Alghamdi, M.A.; Shamy, M.; Khoder, M.I.; Costa, M.; Assidi, M.; Kadam, R.; Alsehli, H.; Gari, M.; Pushparaj, P.N.; Kalamegam, G.; Al-Qahtani, M.H. Evaluation of the Effects of Airborne Particulate Matter on Bone Marrow-Mesenchymal Stem Cells (BM-MSCs): Cellular, Molecular and Systems Biological Approaches. Int. J. Environ. Res. Public Health 2017, 14, 440. Abu-Elmagd, M.; Alghamdi, M.A.; Shamy, M.; Khoder, M.I.; Costa, M.; Assidi, M.; Kadam, R.; Alsehli, H.; Gari, M.; Pushparaj, P.N.; Kalamegam, G.; Al-Qahtani, M.H. Evaluation of the Effects of Airborne Particulate Matter on Bone Marrow-Mesenchymal Stem Cells (BM-MSCs): Cellular, Molecular and Systems Biological Approaches. Int. J. Environ. Res. Public Health 2017, 14, 440.

Journal reference: Int. J. Environ. Res. Public Health 2017, 14, 440
DOI: 10.3390/ijerph14040440

Abstract

Particulate matter (PM) contains heavy metals that affect various cellular functions and gene expression associated with an array of acute and chronic diseases, in humans. However, their specific effects on the stem cells remain unclear. Here, we report the effects of PM collected from Jeddah city on bone marrow mesenchymal stem cells (BM-MSCs) on proliferation, cell death, related gene expression and systems biological analysis aiming to understand the underlying mechanisms. Two different sizes (PM2.5-10) were tested in vitro at various concentrations (15 to 300 µg/ml) and durations (24 to 72 h). PMs induced cellular stress including membrane damage, shrinkage and death. Lower concentrations of PM2.5 increased BM-MSCs proliferation, while higher concentrations decreased it. PM10 decreased BM-MSCs proliferation in a concentration-dependant manner. The X-Ray Fluorescence spectrometric analysis showed that PM contains high levels of heavy metals. Ingenuity Pathway Analysis (IPA) and hierarchical clustering analyses showed that heavy metals were associated with signalling pathways involving cell stress/death, cancer and chronic diseases. qRT-PCR results showed differential regulation of the apoptosis genes (BCL2, BAX); upregulation of inflammation associated genes (TNF-a and IL-6) and downregulation of cell cycle regulation gene (P53). We conclude that PM could affect different cellular functions and predispose to debilitating diseases.

Subject Areas

Particulate matter; BM-MSCs; cell proliferation; cell death; qRT-PCR; IPA

Readers' Comments and Ratings (0)

Discuss and rate this article
Views 0
Downloads 0
Comments 0
Metrics 0
Discuss and rate this article

×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.