Preprint Review Version 1 This version not peer reviewed

Review of Antibacterial Activity of Titanium-based Implants Surfaces Fabricated by Micro-arc Oxidation

Version 1 : Received: 14 March 2017 / Approved: 14 March 2017 / Online: 14 March 2017 (07:49:40 CET)

A peer-reviewed article of this Preprint also exists.

He, X.; Zhang, X.; Wang, X.; Qin, L. Review of Antibacterial Activity of Titanium-Based Implants’ Surfaces Fabricated by Micro-Arc Oxidation. Coatings 2017, 7, 45. He, X.; Zhang, X.; Wang, X.; Qin, L. Review of Antibacterial Activity of Titanium-Based Implants’ Surfaces Fabricated by Micro-Arc Oxidation. Coatings 2017, 7, 45.

Journal reference: Coatings 2017, 7, 45
DOI: 10.3390/coatings7030045

Abstract

Ti and its alloys are the most commonly used materials for biomedical applications. However, bacterial infection after implant placement is still one of the significant rising complications. Therefore, the application of the antimicrobial agents into implant surfaces to prevent implant-associated infection has attracted lots of attention. Scientific papers have shown that inorganic antibacterial metal element (e.g. Ag, Cu, Zn) can be introduced to implant surfaces with the addition of metal nanoparticles or metallic compounds into electrolyte via micro-arc oxidation (MAO) technology. In this review, the effects of the composition and concentration of electrolyte and process parameters (e.g. voltage, current density, oxidation time) on morphological characteristics (e.g. surface morphology, bonding strength), antibacterial ability and biocompatibility of MAO antimicrobial coating were discussed in detail. Anti-infection and osseo-integration can be simultaneously accomplished with the selection of the proper antibacterial elements and operating parameters. Besides, MAO assisted by magnetron sputtering (MS) to endow Ti-based implant materials with superior antibacterial ability and biocompatibility was also discussed. Finally, the development trend of MAO technology in the future was forecasted.

Subject Areas

micro-arc oxidation; antibacterial ability; Ag; Cu; Zn

Readers' Comments and Ratings (0)

Leave a public comment
Send a private comment to the author(s)
Rate this article
Views 0
Downloads 0
Comments 0
Metrics 0
Leave a public comment

×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.