Preprint Communication Version 1 Preserved in Portico This version is not peer-reviewed

Ultrathin Six-Band Polarization-Insensitive Terahertz Perfect Metamaterial Absorber Based on a Cross-Cave Patch Resonator

Version 1 : Received: 3 March 2017 / Approved: 6 March 2017 / Online: 6 March 2017 (17:29:53 CET)

A peer-reviewed article of this Preprint also exists.

Cheng, Y.Z.; Huang, M.L.; Chen, H.R.; Guo, Z.Z.; Mao, X.S.; Gong, R.Z. Ultrathin Six-Band Polarization-Insensitive Perfect Metamaterial Absorber Based on a Cross-Cave Patch Resonator for Terahertz Waves. Materials 2017, 10, 591. Cheng, Y.Z.; Huang, M.L.; Chen, H.R.; Guo, Z.Z.; Mao, X.S.; Gong, R.Z. Ultrathin Six-Band Polarization-Insensitive Perfect Metamaterial Absorber Based on a Cross-Cave Patch Resonator for Terahertz Waves. Materials 2017, 10, 591.

Abstract

A simple design of an ultrathin six-band polarization-insensitive terahertz perfect metamaterial absorber (PMMA) composed of a metal cross-cave-patch resonator (CCPR) placed over a ground plane was proposed and investigated numerically. The numerical simulation results demonstrate that the average absorption peaks are up to 95% at six resonance frequencies with high quality-factors (>65). In addition, the absorption properties can be kept stability for both normal incident transverse magnetic (TM) and transverse electric (TE) waves. The physical mechanism behind the observed high level absorption is illustrated by the electric and power loss density distributions. The different absorption mainly originates from the higher order multipolar and multipolar plasmon resonance of the structure, which are sharp different to the most previous studies of the PMMAs. Furthermore, the resonance absorption of the PMMA can be tunable by varying the geometric parameters of the unit cell.

Keywords

Planar metamaterial absorber; terahertz; six-band; cave-cross patch resonator

Subject

Engineering, Electrical and Electronic Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.