Preprint Article Version 2 Preserved in Portico This version is not peer-reviewed

Global Existence, Asymptotic Behavior and Blow-up of Solutions for a Suspension Bridge Equation with Nonlinear Damping and Source Terms

Version 1 : Received: 16 February 2017 / Approved: 16 February 2017 / Online: 16 February 2017 (08:40:48 CET)
Version 2 : Received: 24 February 2017 / Approved: 24 February 2017 / Online: 24 February 2017 (09:06:57 CET)

A peer-reviewed article of this Preprint also exists.

Liu, W. & Zhuang, H. Nonlinear Differ. Equ. Appl. (2017) 24: 67. Liu, W. & Zhuang, H. Nonlinear Differ. Equ. Appl. (2017) 24: 67.


In this paper, we consider a fourth-order suspension bridge equation with nonlinear damping term |ut|m-2ut and source term |u|p-2u. We give necessary and sufficient condition for global existence and energy decay results without considering the relation between m and p. Moreover, when p>m, we give sufficient condition for finite time blow-up of solutions. The lower bound of the blow-up time Tmax is also established. It worth to mention that our obtained results extend the recent results of Wang (J. Math. Anal. Appl., 2014) to the nonlinear damping case.


suspension bridges; fourth order wave equation; nonlinear damping; source term; existence; blow up


Computer Science and Mathematics, Analysis

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0

Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.