
GLOBAL EXISTENCE, ASYMPTOTIC BEHAVIOR AND BLOW-UP OF

SOLUTIONS FOR A SUSPENSION BRIDGE EQUATION WITH NONLINEAR

DAMPING AND SOURCE TERMS

WENJUN LIU AND HEFENG ZHUANG

Abstract. In this paper, we consider a fourth-order suspension bridge equation with nonlinear damping
term |ut|m−2ut and source term |u|p−2u. We give necessary and sufficient condition for global existence
and energy decay results without considering the relation between m and p. Moreover, when p > m, we

give sufficient condition for finite time blow-up of solutions. The lower bound of the blow-up time Tmax

is also established. It worth to mention that our obtained results extend the recent results of Wang (J.
Math. Anal. Appl., 2014) to the nonlinear damping case.

1. Introduction

Suspension bridge means a bridge takes the cable (or steel chain), which is hanged by tower and
anchored on both sides (or both ends of the bridge), as an upper structure of the main load-bearing
elements. Compared to other bridge structures, suspension bridge can use less material to span longer
distance. Suspension bridge is suitable for the valley, rivers and other natural barrier regions. Due
to these advantages, the construction method of suspension bridge is mostly used in modern bridges.
At the same time, the security issues of suspension bridge have also attracted the attention of many
scholars. Thus constructing a reasonable mathematical model and investigating the physical properties
of suspension bridge are extremely necessary.

In this paper, we study the following fourth-order suspension bridge equation with nonlinear damping
and source terms: 

utt +∆2u+ au+ |ut|m−2ut = |u|p−2u, (x, y, t) ∈ Ω× (0, T ),

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω̄,

ut(x, y, 0) = u1(x, y), (x, y) ∈ Ω̄,

(1.1)

with the boundary conditions
u(0, y, t) = uxx(0, y, t) = u(π, y, t) = uxx(π, y, t) = 0, (y, t) ∈ (−l, l)× [0, T ),
uyy(x,±l, t) + σuxx(x,±l, t)

= uyyy(x,±l, t) + (2− σ)uxxy(x,±l, t) = 0, (x, t) ∈ (0, π)× [0, T ),

(1.2)

where Ω = (0, π) × (−l, l) ⊂ R2, 2 ≤ m < ∞, 2 < p < ∞, 0 < σ < 1
2 and a = a(x, y) is a sign-changing

and bounded measurable function. The initial data u0 and u1 belong to suitable spaces, which will be
specified later.

There is a large number of publications concerning suspension bridge models. At the very beginning, in
[20, 27, 28], McKenna et al. suggested a one-dimensional simply supported beam suspended by hangers as
a model for suspension bridges. It was assumed that when the hangers are stretched there is a restoring
force, which is proportional to the amount of stretching; while when the beam moves in the opposite
direction, the hangers slacken and there is no restoring force exerted on it. Let u = u(x, t) be the vertical
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2 W. J. LIU AND H. F. ZHUANG

displacement of the beam in the downward direction and u+ = max{u, 0}, then the following fourth order
nonlinear equation is derived:

(1.3) utt + uxxxx + γu+ = f(x, t), x ∈ (0, L), t > 0,

where γu+ represents the force due to the hangers, and f is the forcing term acting on the bridge,
including its own weight per unit length. For time periodic f , McKenna and Walter [27] proved the
existence of multiple periodic solutions of problem (1.3).

However, when people study the collapse of Tacoma Narrows Bridge in 1940, they came to realize that
it was not appropriate to simply consider the suspension bridge as a beam. The report [2] about the
Tacoma Narrows Bridge collapse [39] concluded that “. . . the crucial event in the collapse to be the sudden
change from a vertical to a torsional mode of oscillation”. If one simply models a suspension bridge by a
beam, there is no way to highlight the torsional oscillations. Therefore, a reliable model for suspension
bridges should be nonlinear and it should have enough degrees of freedom to display torsional oscillations.
By now, the nonlinear behavior of the suspension bridge is well established, see [1, 4, 11, 18, 38]. In [21],
Lazer and McKenna suggested to study the following equation:

(1.4) ∆2u+ c2∆u+ h(u) = 0, x ∈ Rn,

where h(u) ≈ [u+ 1]
+−1. After that, equations like (1.4) with the Navier boundary condition have been

considered in many papers, see [22, 41, 44, 46]. Recently, Ferrero and Gazzola [8] suggested that one
should consider the boundaries of plate Ω = (0, π)× (−l, l) which represents the roadway of a suspension
bridge as follows: due to the connection with the ground, the vertical edges of the plate is assumed to be
hinged and thus

(1.5) u(0, y) = uxx(0, y) = u(π, y) = uxx(π, y) = 0, ∀ y ∈ (−l, l);

while the edges y = ±l are free and the boundary conditions at y = ±l become

(1.6) uyy(x,±l) + σuxx(x,±l) = 0, uyyy(x,±l) + (2− σ)uxxy(x,±l) = 0, ∀ x ∈ (0, π).

The free boundaries (1.6) yield small stretching energy for the plate, so Ferrero and Gazzola took c = 0
in (1.4) and introduced the following model for the nonlinear dynamical suspension bridge:

(1.7) utt +∆2u+ µut + h(x, y, u) = f(x, y, t), (x, y, t) ∈ Ω× (0, T ),

where h(x, y, u) is restoring force due to the hangers of the suspension bridge, f(x, y, t) is the external
force including the gravity. More recently, given an open rectangular plate Ω = (0, π) × (−l, l) ⊂ R2,
Wang [42] considered problem (1.1)-(1.2) but with a linear damping (m = 2). They proved the local
existence, global existence and finite time blow-up of solutions as well as the estimation on the potential
well depth. For more detail information about this suspension bridge model, we refer the readers to
[8, 15, 31, 32, 33] and references therein.

At the same time, the following wave equations with nonlinear damping and source terms have been
extensively studied and many results concerning the existence and nonexistence were established:

utt −∆u+ a|ut|m−2ut = b|u|p−2u, (x, t) ∈ Ω× (0, T ),

u(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω, t = 0.

(1.8)

In the absence of damping term (a = 0), it is well known that the source term b|u|p−2u causes finite time
blow-up of solutions with negative initial energy, see [3, 23, 37]. On the contrary, if there is no source
term (b = 0), the damping term a|ut|m−2ut assures global existence for arbitrary initial data, see [13, 17].
After that, in [23, 24], Levine first considered the interaction between the damping and the source terms
in the linear damping case (m = 2). He showed that solutions with negative initial energy blow up in
finite time. Georgiev and Todorova [12] extended Levine’s result to the nonlinear damping case (m > 2).
In their work, the authors introduced a different method and determined suitable relations between m
and p for which there is global existence or alternatively finite time blow-up. Specifically, they showed
that solutions with any initial data continue to exist globally if m ≥ p and blow up in finite time if p > m
and the initial energy is sufficiently negative. Without imposing the condition that the initial energy is
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A SUSPENSION BRIDGE EQUATION 3

sufficiently negative, Messaoudi [29] extended the blow up result of [12] to solutions with negative initial
energy only. It worth to mention that, in [14], without considering the relation between m and p, the
author established the global existence and finite time blow-up of solutions for problem (1.8) where a > 0
and b = 1 by using potential well theory. In [9], Guesmia studied the following equation:

(1.9) utt +∆2u+ q(x)u+ g(ut) = 0,

where q : Ω → R+ is a bounded function. Under some assumptions, he showed the solution of (1.9)
decays exponentially if g behaves like a linear function, whereas the decay is polynomially otherwise. For
more decay results, we refer the reader to [5, 6, 7, 10, 16, 19, 25, 26, 40, 43, 47, 48] and the references
therein. In recent years, more authors pay attention to the lower and upper bounds for blow-up time.
For example, Messaoudi [30] showed the upper bounds for blow-up time of a system of Petrovsky. Zhou
[49] considered the lower bounds for blow-up time of the solutions to two nonlinear wave equations.

In the present paper, our purpose is to investigate the global existence, energy decay and finite time
blow-up of solutions of initial-boundary value problem (1.1)-(1.2). We note here that au represents the
restoring force because of the hangers of the suspension bridge, |ut|m−2ut describes the nonlinear internal
friction and |u|p−2u represents the other external forces acting on the suspension bridge.

We pass to describe in more detail the remaining content of the paper.
In Section 2, we recall some materials given in [8] and [42], which are needed in our proofs.
In Section 3, for sake of convenience, we give two important lemmas as well as the detailed proofs.
In Section 4, we establish the existence and uniqueness of local solutions to (1.1)-(1.2) by using the

contraction mapping principle.
In Section 5, without considering the relation between m and p, we give necessary and sufficient

condition for global existence and energy decay results. The proof of global existence result is based on
the potential well theory and the continuous principle; while for energy decay result, the proof is based
on the Nakao’s inequality and some techniques given in [43].

In Section 6, under the condition that p > m, we give sufficient condition for blow-up result. We
note that due to the presence of nonlinear damping term |ut|m−2ut, it’s difficult to apply the concavity
method to our proof. So, our strategy is to construct an inequality for energy E(t).

At last, in Section 7, by using the auxiliary functional introduced by Yang et al. [45], we establish the
lower bound of the blow-up time Tmax.

It worth mentioning that our obtained results extend the recent results of Wang [42] to the nonlinear
damping case. Compared to the results given in [42], the lower bound of the blow-up time Tmax of the
present paper is a new content.

2. Preliminaries

In this section, we recall some materials given in [8] and [42], which are needed in the proofs of our
results.

Firstly, let Ω = (0, π) × (−l, l) ⊂ R2, we define the standard Lp(Ω) norm by ∥·∥p for 1 ≤ p < ∞ and

the H 2(Ω) norm by ∥·∥H 2 =
(
∥·∥22 + ∥D2·∥22

) 1
2 . In addition, we introduce the following functional space:

H 2
∗ = H 2

∗ (Ω) := {u ∈ H 2(Ω)|u = 0 on {0, π} × (−l, l)}.

The related dual space is defined by H(Ω) and the corresponding duality between them is denoted by
⟨·, ·⟩. It is easy to verify that H 2

∗ satisfies H 2
0 (Ω) ⊂ H 2

∗ (Ω) ⊂ H 2(Ω) and is a Hilbert space endowed with
the inner product

(u, v)H 2
∗
=

∫
Ω

∆u∆vdxdy + (1− σ)

∫
Ω

(2uxyvxy − uxxvyy − uyyvxx)dxdy, ∀ u, v ∈ H 2
∗ .

This inner product induces a norm

∥u∥H 2
∗
=

(∫
Ω

|∆u|2dxdy + 2(1− σ)

∫
Ω

(
u2
xy − uxxuyy

)
dxdy

) 1
2

, ∀ u ∈ H 2
∗ ,
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4 W. J. LIU AND H. F. ZHUANG

which is equivalent to ∥·∥H 2 for 0 < σ <
1

2
. For the proof we refer the reader to [8]. Moreover, we have

the following Sobolev embedding inequality:

Lemma 2.1. [42] Assume that 1 ≤ q < ∞. Then for any u ∈ H 2
∗ , the inequality

(2.1) ∥u∥q ≤ Sq∥u∥H 2
∗

holds, where Sq = ( π
2l +

√
2
2 )(2πl)

q+2
2q ( 1

1−σ )
1
2 .

Remark 1. [42] Here Sq is not less than the best Sobolev embedding constant. How to obtain the best
constant is still open.

Besides, considering the following eigenvalue problem:
∆2u = Λu, (x, y) ∈ Ω,

u(0, y) = uxx(0, y) = u(π, y) = uxx(π, y) = 0, y ∈ (−l, l),

uyy(x,±l) + σuxx(x,±l) = uyyy(x,±l) + (2− σ)uxxy(x,±l) = 0, x ∈ (0, π),

(2.2)

we learn from [42] that the set of eigenvalues of (2.2) may be ordered in an increasing sequence {Λi}∞i=1

of strictly positive numbers diverging to +∞, and the least eigenvalue Λ1 satisfies 0 < Λ1 < 1. Also, we
have the following basic results:

Lemma 2.2. [42] Assume that −Λ1 < a1 ≤ a ≤ a2. Then for any u ∈ H 2
∗ , there holds

A1∥u∥2H 2
∗
≤ ∥u∥2H 2

∗
+ (au, u)2 ≤ A2∥u∥2H 2

∗
,(2.3)

where (·, ·)2 is the L2 inner product and A1, A2 are given by

A1 =

 1 +
a1
Λ1

, a1 < 0,

1, a1 ≥ 0
(2.4)

and

A2 =


1, a2 < 0,

1 +
a2
Λ1

, a2 ≥ 0.
(2.5)

Now, we define the Nehari functional I and the energy functional J :

I(u) = ∥u∥2H 2
∗
+ (au, u)2 − ∥u∥pp, for every u ∈ H 2

∗ ,

J(u) =
1

2
∥u∥2H 2

∗
+

1

2
(au, u)2 −

1

p
∥u∥pp, for every u ∈ H 2

∗ ,

which play critical roles in dealing with our problem. Let u be an arbitrary nonzero element in H 2
∗ and

consider a real value function defined by

j(λ) = J(λu), λ ≥ 0,

then
j′(λ) = λ∥u∥2H 2

∗
+ λ(au, u)2 − λp−1∥u∥pp,

j′′(λ) = ∥u∥2H 2
∗
+ (au, u)2 − (p− 1)λp−2∥u∥pp.

Clearly, j(0) = j′(0) = 0 and j′′(0) = ∥u∥2H 2
∗
+ (au, u)2 > 0 for a > −Λ1. Thus for any 0 ̸= u ∈ H 2

∗ , j(λ)

is a convex function for small λ > 0 and has the following behaviors:

Lemma 2.3. [42] Assume that −Λ1 < a1 ≤ a ≤ a2. Then for any nontrivial u ∈ H 2
∗ ,

(i) lim
λ→∞

j (λ) = −∞;

(ii) there exists a unique λ̄ = λ̄(u) > 0 such that j ′(λ̄) = 0;

(iii) j ′′(λ̄) < 0.
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A SUSPENSION BRIDGE EQUATION 5

Then, we could define the potential well depth of the functional J (also known as mountain pass level)
by

(2.6) d = inf
u∈H 2

∗ \{0}
max
λ>0

J(λu).

Denote the set of all nontrivial stationary solutions to the problem (1.1)-(1.2) by

N = {u ∈ H 2
∗ \ {0} : I(u) = 0},

which is the so-called Nehari manifold. By considering a map s 7→ I(su) for all u such that ∥u∥2H 2
∗
= 1

and Lemma 2.3, it is easy to check that each half line starting from the origin of H 2
∗ intersects only once

the manifold N and N separates the following two sets:

N+ = {u ∈ H 2
∗ : I(u) > 0} ∪ {0} and N− = {u ∈ H 2

∗ : I(u) < 0}.

Then the stable set W and unstable set U may be defined by

W = {u ∈ N+ : J(u) < d}, U = {u ∈ N− : J(u) < d}

Lemma 2.4. [42] The following properties of W and U hold:

(i) W is a neighborhood of 0 ∈ H 2
∗ ;

(ii) 0 ̸∈ Ū (closure in H 2
∗ )

As Payne and Sattinger did in [37], the potential well depth d defined in (2.6) can be also characterized
as

(2.7) d = inf
u∈N

J(u).

Finally, we consider an energy functional E : H 2
∗ (Ω)× L2(Ω) → R defined by

E(v, w) = J(v) +
1

2
∥w∥22, for every pair (v, w) ∈ H 2

∗ (Ω)× L2(Ω),

and the Lyapunov function E(t) = E(u(t), ut(t)), defined for any solution u(t) of problem (1.1)-(1.2).
That is

(2.8) E(t) =
1

2
∥u(t)∥2H 2

∗
+

1

2
∥ut(t)∥22 +

1

2
(au(t), u(t))2 −

1

p
∥u(t)∥pp,

which satisfies that

(2.9) E(t) +

∫ t

s

∥uτ (τ)∥mmdτ = E(s), for every 0 ≤ s ≤ t < Tmax.

3. Some calculations

In this section, we introduce two lemmas, which will be used in the following paper.

Lemma 3.1. [34] For u, v ∈ H 4(Ω) ∩H 2
∗ (Ω) satisfying (1.2), we have(

∆2u, v
)
L2(Ω)

= (u, v)H 2
∗ (Ω) .

Remark 2. We note that this lemma is given in many literatures, but it is rare to see its proof. Here
we give a detailed proof of it.

Proof. Note first that, for all u ∈ H 4(Ω) ∩H 2
∗ (Ω) satisfying (1.2), we have

u(0, y) = u(π, y) = uy(0, y) = uy(π, y) = uyy(0, y) = uyy(π, y) = 0
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6 W. J. LIU AND H. F. ZHUANG

for any y ∈ (−l, l). Then, by adapting the Gauss-Green formula and the definition of (u, v)H 2
∗
, we have∫

Ω

∆2uvdxdy − (u, v)H 2
∗

=

∫
Ω

∆u∆vdxdy −
∫
∂Ω

[∆uvν − v(∆u)ν ] ds−
∫
Ω

∆u∆vdxdy

− (1− σ)

∫
Ω

(2uxyvxy − uxxvyy − uyyvxx) dxdy

=−
{∫

∂Ω

[∆uvν − v(∆u)ν ] ds+ (1− σ)

∫
Ω

(2uxyvxy − uxxvyy − uyyvxx) dxdy

}
Next, we prove that∫

∂Ω

[∆uvν − v(∆u)ν ] ds+ (1− σ)

∫
Ω

(2uxyvxy − uxxvyy − uyyvxx) dxdy = 0.

∫
∂Ω

[∆uvν − v(∆u)ν ] ds+ (1− σ)

∫
Ω

(2uxyvxy − uxxvyy − uyyvxx) dxdy

=

∫ l

−l

[uxx(π, y)vx(π, y)− uxx(0, y)vx(0, y)] dy

+

∫ π

0

{
[uyyy(x,−l) + (2− σ)uxxy(x,−l)] v(x,−l)− [uyy(x,−l) + σuxx(x,−l)] vy(x,−l)

}
dx

+

∫ π

0

{
[uyy(x, l) + σuxx(x, l)] vy(x, l)− [uyyy(x, l) + (2− σ)uxxy(x, l)] v(x, l)

}
dx

+ (1− σ)

∫
Ω

(2uxyvxy − uxxvyy − uyyvxx) dxdy

−
{∫ π

0

[(1− σ)uxxy(x,−l)v(x,−l)− (σ − 1)uxx(x,−l)vy(x,−l)] dx

+

∫ π

0

[(σ − 1)uxx(x, l)vy(x, l)− (1− σ)uxxy(x, l)v(x, l)] dx

}
.

We note that

(1− σ)

∫
Ω

(2uxyvxy − uxxvyy − uyyvxx) dxdy

−
{∫ π

0

[(1− σ)uxxy(x,−l)v(x,−l)− (σ − 1)uxx(x,−l)vy(x,−l)] dx

+

∫ π

0

[(σ − 1)uxx(x, l)vy(x, l)− (1− σ)uxxy(x, l)v(x, l)] dx

}
=(1− σ)

∫
Ω

(2uxyvxy − uxxvyy − uyyvxx) dxdy + (1− σ)

∫ π

0

∫ l

−l

∂ (uxxyv + uxxvy)

∂y
dydx

=(1− σ)

{∫
Ω

(2uxyvxy − uxxvyy − uyyvxx + uxxyyv + uxxyvy + uxxyvy + uxxvyy) dxdy

}
=(1− σ)

{
2

∫ l

−l

∫ π

0

(uxyvxy + uxxyvy)dxdy +

∫ l

−l

∫ π

0

(uxxyyv − uyyvxx)dxdy

}
.

We find that

2

∫ l

−l

∫ π

0

(uxyvxy + uxxyvy)dxdy = 2

∫ l

−l

uxyvy
∣∣π
0
dy = 0,
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and ∫ l

−l

∫ π

0

uyyvxxdxdy =

∫ l

−l

{
uyyvx

∣∣π
0
−
∫ π

0

vxuxyydx

}
dy

=−
∫ l

−l

∫ π

0

vxuxyydxdy = −
∫ l

−l

{
vuxyy

∣∣π
0
−
∫ π

0

uxxyyvdx

}
dy =

∫ l

−l

∫ π

0

uxxyyvdxdy.

Thus

(1− σ)

∫
Ω

(2uxyvxy − uxxvyy − uyyvxx) dxdy

−
{∫ π

0

[(1− σ)uxxy(x,−l)v(x,−l)− (σ − 1)uxx(x,−l)vy(x,−l)] dx

+

∫ π

0

[(σ − 1)uxx(x, l)vy(x, l)− (1− σ)uxxy(x, l)v(x, l)] dx

}
=0,

which combining with the boundary conditions (1.2) leads to∫
∂Ω

[∆uvν − v(∆u)ν ] ds+ (1− σ)

∫
Ω

(2uxyvxy − uxxvyy − uyyvxx) dxdy = 0.

That is (
∆2u, v

)
L2(Ω)

=

∫
Ω

∆2uvdxdy = (u, v)H 2
∗ (Ω) .

The proof is completed. �

Lemma 3.2. For u ∈ H 2
∗ (Ω) satisfying (1.2), we have∫ t2

t1

(u, uτ )H 2
∗
dτ =

1

2
∥u(t2)∥2H 2

∗
− 1

2
∥u(t1)∥2H 2

∗
.

Proof. Using the definition of (u, ut)H 2
∗
directly, we can get∫ t2

t1

(u, uτ )H 2
∗
dτ

=

∫ t2

t1

∫
Ω

[∆u∆uτ + (1− σ) (2uxyuxyτ − uxxuyyτ − uyyuxxτ )] dxdydτ

=

∫
Ω

{∫ t2

t1

∆ud(∆u(·, τ)) + (1− σ)

(
2

∫ t2

t1

uxyd(uxy(·, τ))−
∫ t2

t1

d(uxx(·, τ)uyy(·, τ))
)}

dxdy

=

∫
Ω

{
∆u∆u

2

∣∣t2
t1
+ (1− σ)

(
2× uxyuxy

2

∣∣t2
t1
− 2uxxuyy

2

∣∣t2
t1

)}
dxdy

=
1

2
∥u(t2)∥2H 2

∗
− 1

2
∥u(t1)∥2H 2

∗
.

The proof is completed. �

4. Local existence

In this section, we are concerned with the local existence of solutions to problem (1.1)-(1.2). To begin
with, we explain what does a weak solution mean to our problem.

Definition 1. A function u ∈ C([0, T ],H 2
∗ (Ω))∩C1([0, T ], L2(Ω))∩C2([0, T ],H(Ω)) with ut ∈ Lm ([0, T ],

Lm(Ω)) is called a weak solution to (1.1)-(1.2), if the following conditions hold

u(0) = u0, ut(0) = u1

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 February 2017  doi:10.20944/preprints201702.0057.v2

Peer-reviewed version available at Nonlinear Differential Equations and Applications NoDEA 2017, 24, ; doi:10.1007/s00030-017-0491-5

http://dx.doi.org/10.20944/preprints201702.0057.v2
http://dx.doi.org/10.1007/s00030-017-0491-5


8 W. J. LIU AND H. F. ZHUANG

and

⟨utt, η⟩+ (u, η)H 2
∗
+

∫
Ω

auηdxdy +

∫
Ω

|ut|m−2utηdxdy =

∫
Ω

|u|p−2uηdxdy

for all η ∈ H 2
∗ (Ω) and a.e. t ∈ [0, T ].

Then, we have the following local existence theorem.

Theorem 4.1. Suppose that m ≥ 2, p > 2 and −Λ1 < a1 ≤ a ≤ a2 hold. The initial data (u0, u1) ∈
H 2

∗ (Ω)× L2(Ω) are given. Then problem (1.1)-(1.2) admits a unique local weak solution for some T > 0
such that

u ∈ C([0, T ],H 2
∗ (Ω)) ∩ C1([0, T ], L2(Ω)) ∩ C2([0, T ],H(Ω)),

ut ∈ C([0, T ], L2(Ω)) ∩ Lm([0, T ]× Ω).

Moreover, if

Tmax = sup{T > 0 : u = u(t) exists on [0, T ]} < ∞,

then

lim
t→Tmax

∥u(t)∥q = ∞, for q ≥ 1 such that q >
p− 2

2
.

Proof. We start with some definitions. For every T > 0, we set the space

H = C([0, T ],H 2
∗ (Ω)) ∩ C1([0, T ], L2(Ω))

with the norm

∥u(t)∥H =

(
max
t∈[0,T ]

(A1∥u(t)∥2H 2
∗ (Ω) + ∥ut(t)∥22)

) 1
2

,

where A1 is given in Lemma 2.2. For u0 ∈ H 2
∗ (Ω), u1 ∈ L2(Ω), we denote

MT = {u ∈ H : u(0) = u0, ut(0) = u1 and ∥u(t)∥2H ≤ R2},
where R2 ≥ 2(A2∥u0∥2H 2

∗
+ ∥u1∥22) and A2 is given in Lemma 2.2.

Then we consider the initial problem
vtt +∆2v + av + |vt|m−2vt = |u|p−2u, (x, y, t) ∈ Ω× (0, T ),

v(x, y, 0) = u0(x, y), (x, y) ∈ Ω̄,

vt(x, y, 0) = u1(x, y), (x, y) ∈ Ω̄,

(4.1)

with the boundary conditions
v(0, y, t) = vxx(0, y, t) = v(π, y, t) = vxx(π, y, t) = 0, (y, t) ∈ (−l, l)× [0, T ),
vyy(x,±l, t) + σvxx(x,±l, t)

= vyyy(x,±l, t) + (2− σ)vxxy(x,±l, t) = 0, (x, t) ∈ (0, π)× [0, T ),

(4.2)

for every t ∈ [0, T ].

Lemma 4.1. Assume that u0 ∈ H 2
∗ (Ω), u1 ∈ L2(Ω) and −Λ1 < a1 ≤ a ≤ a2. Then for every u ∈ H,

there exists a unique solution v ∈ H∩C2([0, T ],H(Ω)) with vt ∈ Lm([0, T ]×Ω) to the problem (4.1)-(4.2).

Proof. According to [8, Theorem 3.6] and [42, Lemma 4.1], we can easily prove that there exists a
v ∈ H ∩C2([0, T ],H(Ω)) satisfies problem (4.1)-(4.2). To complete the proof, here we need to prove that
vt ∈ Lm([0, T ]× Ω).

Taking vt as a test function and integrate over Ω× [0, t] ⊂ Ω× [0, T ], we have∫ t

0

⟨vττ (τ), vτ (τ)⟩dτ +

∫ t

0

(v(τ), vτ (τ))H 2
∗
dτ +

∫ t

0

∥vτ (τ)∥mmdτ +

∫ t

0

(av(τ), vτ (τ))2dτ

=

∫ t

0

∫
Ω

|u(τ)|p−2u(τ)vτ (τ)dxdydτ.
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Recalling that a1 ≤ a ≤ a2 and by Lemma 2.2 and 3.2, we have

∥vt(t)∥22 +A1∥v(t)∥2H 2
∗
+ 2

∫ t

0

∥vτ (τ)∥mmdτ

≤∥u1∥22 +A2∥u0∥2H 2
∗
+ 2

∫ t

0

∫
Ω

|u(τ)|p−2u(τ)vτ (τ)dxdydτ.(4.3)

Notice that

2

∫ t

0

∫
Ω

|u(τ)|p−2u(τ)vτ (τ)dxdydτ = 2

∫ t

0

∫
Ω

|u(τ)|p−1vτ (τ)dxdydτ

≤ 2

∫ t

0

∥u(τ)∥p−1
(p−1)m
m−1

∥vτ (τ)∥mdτ

≤ 2C(ε)

∫ t

0

∥u(τ)∥
(p−1)m
m−1

(p−1)m
m−1

dτ + 2ε

∫ t

0

∥vτ (τ)∥mmdτ

≤ 2C(ε)

∫ t

0

∥u(τ)∥
(p−1)m
m−1

H 2
∗

dτ + 2ε

∫ t

0

∥vτ (τ)∥mmdτ

≤ CT + 2ε

∫ t

0

∥vτ (τ)∥mmdτ

Taking ε small enough and from (4.3), we have∫ t

0

∥vτ (τ)∥mmdτ ≤ CT,

which deduces that vt ∈ Lm([0, T ]× Ω) and completes the proof of Lemma 4.1. �

Now, we come to prove Theorem 4.1. For any u ∈ MT , we defined v = Φ(u) such that v is the solution
to problem (4.1)-(4.2). Then Lemma 4.1 shows that Φ is well defined and it maps H into H. We prove
that, for some small T > 0,

(i) Φ maps a ball BR of radius R in MT into itself;

(ii) Φ is a contraction in BR.

In fact, assume that u ∈ MT , then the corresponding solution v = Φ(u) satisfies (4.3) for all t ∈ [0, T ].
Thus, as we did in the proof of Lemma 4.1, there holds

∥vt(t)∥22 +A1∥v(t)∥2H 2
∗
≤ ∥u1∥22 +A2∥u0∥2H 2

∗
+ CR

(p−1)m
m−1 T

≤ R2

2
+ CR

(p−1)m
m−1 T.

If T is small enough, then ∥v∥H ≤ R, which implies that Φ(MT ) ⊆ MT .
To check (ii), we set v1 = Φ(w1), v2 = Φ(w2) with w1, w2 ∈ MT . Putting v1, v2 in Eq. (4.1) and then

subtracting the two equations, we obtain by setting v = v1 − v2

⟨vtt, η⟩+ (v, η)H 2
∗
+ (av, η)2 +

∫
Ω

(|v1t|m−2v1t − |v2t|m−2v2t)ηdxdy

=

∫
Ω

(|w1|p−2w1 − |w2|p−2w2)ηdxdy

=

∫
Ω

γ(t)(w1 − w2)ηdxdy

for all η ∈ H 2
∗ and a.e. t ∈ [0, T ], where γ(t) is estimated by γ(t) ≤ (p− 1)(|w1|+ |w2|)p−2.

Taking η = vt = v1t − v2t, arguing similarly as above and noting that∫
Ω

(
|v1t|m−2v1t − |v2t|m−2v2t

)
(v1t − v2t) dxdy ≥ 0,
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we have

∥Φ(w1)− Φ(w2)∥2H = ∥v∥2H ≤ CR2p−4T∥w1 − w2∥2H .

Likely, if T is so small that CR2p−4T < 1, then there exists a constant 0 < δ < 1 such that

(4.4) ∥Φ(w1)− Φ(w2)∥2H ≤ δ∥w1 − w2∥2H .

Therefore, Φ is a contract map and (ii) is proved.
According to the contraction mapping principle, there exists u ∈ MT such that u = Φ(u), which is a

solution to problem (4.1)-(4.2). Using (4.4) again, we can easily prove the uniqueness of the solution.
Finally, by the continue principle, we know that if ∥u(t)∥H < ∞, the solution u(t) should be continued,

see also [36, p. 158] for a similar argument. Hence, if Tmax < ∞, it follows

(4.5) lim
t→Tmax

(
A1∥u(t)∥2H 2

∗
+ ∥ut(t)∥22

)
= lim

t→Tmax

∥u(t)∥2H = ∞.

From (2.8) and (2.9), we know that E(t) is nonincreasing and

1

2
∥u(t)∥2H 2

∗
+

1

2
∥ut(t)∥22 +

1

2
(au(t), u(t))2 ≤ 1

p
∥u(t)∥pp + E(0), for all t ∈ [0, Tmax).

By Lemma 2.2, there holds

(4.6)
A1

2
∥u(t)∥2H 2

∗
+

1

2
∥ut(t)∥22 ≤ 1

p
∥u(t)∥pp + E(0), for all t ∈ [0, Tmax).

According to (4.5), it implies that
lim

t→Tmax

∥u(t)∥p = ∞.

By Lemma 2.1, we have

(4.7) lim
t→Tmax

∥u(t)∥H 2
∗
= ∞.

Moreover, by (4.6)
A1

2
∥u(t)∥2H 2

∗
≤ 1

p
∥u(t)∥pp + E(0),

which combined with Gagliardo-Nirenberg inequality yields that

C∥u(t)∥2H 2
∗
− C ≤ ∥u(t)∥pp ≤ C∥u(t)∥p(1−α)

q ∥u(t)∥pαH 2
∗
, for α =

2(p− q)

p(q + 2)
.

If α ∈ (0, 1) such that pα < 2, that is p−2
2 < q < p, then the above inequality and (4.7) immediately yield

lim
t→Tmax

∥u(t)∥q = ∞, for q ≥ 1 such that q >
p− 2

2
.

The proof is completed. �

5. Global existence and energy decay

In this section, we state and prove the necessary and sufficient conditions for global existence and
energy decay of solutions to problem (1.1)-(1.2). We need to estimate the potential well depth first.

Lemma 5.1. [42] Assume that −Λ1 < a1 ≤ a ≤ a2, 2 < p < ∞. Then the potential well depth d can be
estimated by

0 < D =
p− 2

2p
A

p
p−2

1 S
− 2p

p−2
p ≤ d ≤ p− 2

2p
Cp,

where Sp is the Sobolev embedding constant, A1 is defined in Lemma 2.2 and Cp is given by

Cp =

(
π(1 + a2)

2∥ sinx∥2p

) p
p−2

.

In addition, we need to introduce the following lemma which will be used in our proof.
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Lemma 5.2. [35] Let ϕ(t) be a nonincreasing and nonnegative function on [0, T ], T > 1, such that

ϕ(t)1+r ≤ ω0 (ϕ(t)− ϕ(t+ 1)) on [0, T ],

where ω0 is a positive constant and r is a nonnegative constant. Then we have
(i) if r > 0, then

ϕ(t) ≤
(
ϕ(0)−r + ω−1

0 r[t− 1]+
)− 1

r on [0, T ];

(ii) if r = 0, then

ϕ(t) ≤ ϕ(0)e−ω1[t−1]+ on [0, T ],

where ω1 = ln
(

ω0

ω0−1

)
, here ω0 > 1.

Now, we state the global existence and energy decay results.

Theorem 5.1. Let u be the unique local weak solution to problem (1.1)-(1.2). Suppose that m ≥ 2, p > 2
and −Λ1 < a1 ≤ a ≤ a2 hold. The initial data (u0, u1) ∈ H 2

∗ (Ω) × L2(Ω) are given. Then u is a global
solution,

lim
t→∞

(
∥u(t)∥H 2

∗
+ ∥ut(t)∥2

)
= 0

and

E(t) ≤
(
E(0)−

m−2
2 +

(m− 2)τ

2
[t− 1]+

)− 2
m−2

if and only if there exists a real number t0 ∈ [0, Tmax) such that

u(t0) ∈ W and E(t0) < D,

where τ is given in (5.18).

Proof. (Sufficiency). Assume that there exists a real number t0 ∈ [0, Tmax) such that

u(t0) ∈ W and E(t0) < D.

From Lemma 5.1, we find that D = p−2
2p A

p
p−2

1 S
− 2p

p−2
p ≤ d. Then as the author did in [42, Theorem 3.3],

we can get u(t) ∈ W for all t ∈ [0, Tmax). So

I(u(t)) = ∥u(t)∥2H 2
∗
+ (au(t), u(t))2 − ∥u(t)∥pp > 0,

which means
1

2
∥u(t)∥2H 2

∗
+

1

2
(au(t), u(t))2 −

1

2
∥u(t)∥pp > 0.

Due to the fact that p > 2, we have

J(u(t)) =
1

2
∥u(t)∥2H 2

∗
+

1

2
(au(t), u(t))2 −

1

p
∥u(t)∥pp > 0.

Thus,

E(t) =
1

2
∥ut(t)∥22 + J(u(t)) > 0, t ∈ [0, Tmax).

For all t ∈ [0, Tmax),

J(u(t)) =
p− 2

2p

(
∥u(t)∥2H 2

∗
+ (au(t), u(t))2

)
+

I(u(t))

p

≥p− 2

2p

(
∥u(t)∥2H 2

∗
+ (au(t), u(t))2

)
.(5.1)

By (2.9), we have

1

2
∥ut(t)∥22 + J(u(t)) +

∫ t

0

∥uτ (τ)∥mmdτ = E(0) < d.
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Hence,

(5.2)
1

2
∥ut(t)∥22 +

p− 2

2p

(
∥u(t)∥2H 2

∗
+ (au(t), u(t))2

)
+

∫ t

0

∥uτ (τ)∥mmdτ ≤ C.

Let ϕ ∈ C∞
0 (0, T ), then by equation (1.1) we have

−
∫ T

0

(uτ (τ), ω)2ϕ
′(τ)dτ

=−
∫ T

0

(u(τ), ω)H 2
∗ (Ω)ϕ(τ)dτ −

∫ T

0

(au(τ), ω)2ϕ(τ)dτ −
∫ T

0

(|uτ (τ)|m−2uτ (τ), ω)2ϕ(τ)dτ

+

∫ T

0

(|u(τ)|p−2u(τ), ω)2ϕ(τ)dτ

for all ω ∈ H 2
∗ (Ω). This means utt ∈ C0([0, T ],H(Ω)). From above estimations, we have Tmax = ∞ by

the continuous principle.
We now turn to the proof of energy decay result.
By (2.9), we have

(5.3) E′(t) = −
∫
Ω

|ut|mdxdy.

By integrating (5.3) over [t, t+ 1], t > 0, we have

(5.4) E(t)− E(t+ 1) ≡ D(t)m,

where

(5.5) D(t)m =

∫ t+1

t

∥uτ∥mmdτ.

By virtue of (5.5) and the continuous imbedding of Lm(Ω) into L2(Ω), we observe that∫ t+1

t

∫
Ω

|uτ |2dxdydτ ≤ C

∫ t+1

t

∥uτ (τ)∥2mdτ = CD(t)2.(5.6)

Hence, from (5.6), there exist t1 ∈ [t, t+ 1
4 ] and t2 ∈ [t+ 3

4 , t+ 1] such that

∥ut(ti)∥22 ≤ 4CD(t)2, i = 1, 2.(5.7)

Multiplying equation (1.1) by u and integrating it over Ω× [t1, t2], we get∫ t2

t1

⟨uττ , u⟩dτ +

∫ t2

t1

∫
Ω

△2uudxdydτ +

∫ t2

t1

(au, u)2dτ +

∫ t2

t1

∫
Ω

|uτ |m−1udxdydτ =

∫ t2

t1

∫
Ω

|u|pdxdydτ.

Using Lemma 3.1, we have

(5.8)

∫ t2

t1

I(τ)dτ = −
∫ t2

t1

⟨uττ , u⟩dτ −
∫ t2

t1

∫
Ω

|uτ |m−2uτudxdydτ.

Integrating by parts on the first term of the right hand side of (5.8), we obtain∫ t2

t1

I(τ)dτ ≤
2∑

i=1

∥ut(ti)∥2∥u(ti)∥2 +
∫ t2

t1

∥uτ∥22dτ −
∫ t2

t1

∫
Ω

|uτ |m−2uτudxdydτ.(5.9)
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By Hölder inequality and Lemmas 2.1 and 2.2, we have∣∣∣∣ ∫ t2

t1

∫
Ω

|uτ |m−2uτudxdydτ

∣∣∣∣ ≤ ∫ t2

t1

∥u∥m∥uτ∥m−1
m dτ

≤Sm

∫ t2

t1

∥u∥H 2
∗
∥uτ∥m−1

m dτ

≤Sm

(
2p

(p− 2)A1

) 1
2

sup
t1≤s≤t2

E(s)
1
2

∫ t2

t1

∥uτ∥m−1
m dτ

≤Sm

(
2p

(p− 2)A1

) 1
2

D(t)m−1 sup
t1≤s≤t2

E(s)
1
2 .(5.10)

Using (5.7) and Lemma 2.1, we also have

∥ut(ti)∥2∥u(ti)∥2 ≤ ∥ut(ti)∥2Sm∥u(ti)∥H 2
∗
≤ CD(t) sup

t1≤s≤t2

E(s)
1
2 .(5.11)

Combining (5.6), (5.10) and (5.11), we obtain from (5.9) that

(5.12)

∫ t2

t1

I(τ)dτ ≤ 2CD(t) sup
t1≤s≤t2

E(s)
1
2 + CD(t)2 + Sm

(
2p

(p− 2)A1

) 1
2

D(t)m−1 sup
t1≤s≤t2

E(s)
1
2 .

Using (5.1) and Lemma 2.1, 2.2, we have

∥u(t)∥pp ≤Sp
p∥u(t)∥

p
H 2

∗
≤ Sp

pA
− p

2
1

(
∥u(t)∥2H 2

∗
+ (au(t), u(t))2

) p
2

=Sp
pA

− p
2

1

(
∥u(t)∥2H 2

∗
+ (au(t), u(t))2

) p−2
2
(
∥u(t)∥2H 2

∗
+ (au(t), u(t))2

)
≤Sp

pA
− p

2
1

(
2p

p− 2
J(u(t))

) p−2
2 (

∥u(t)∥2H 2
∗
+ (au(t), u(t))2

)
≤Sp

pA
− p

2
1

(
2p

p− 2

) p−2
2

E(0)
p−2
2

(
∥u(t)∥2H 2

∗
+ (au(t), u(t))2

)
,(5.13)

which implies that

(5.14) γ
(
∥u(t)∥2H 2

∗
+ (au(t), u(t))2

)
≤ I(u(t)),

where γ = 1− Sp
pA

− p
2

1

(
2p

p− 2

) p−2
2

E(0)
p−2
2 > 0. We also find that

∥u(t)∥pp ≤ Sp
pA

− p
2

1 A2

(
2p

p− 2

) p−2
2

E(0)
p−2
2 ∥u(t)∥2H 2

∗
,

and

γA1∥u(t)∥2H 2
∗
≤ I(u(t)).

So

∥u(t)∥pp ≤Sp
pA

− p
2

1 A2

(
2p

p− 2

) p−2
2

E(0)
p−2
2 ∥u(t)∥2H 2

∗

≤
Sp
pA

− p
2

1 A2

(
2p
p−2

) p−2
2

E(0)
p−2
2

γA1
I(u(t))

=C1I(u(t)).
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Here, we have used the fact that A1 > 0 because −Λ1 < a1 ≤ a ≤ a2 and Λ1 > 0. Thus,

E(t) =
1

2
∥u(t)∥2H 2

∗
+

1

2
∥ut(t)∥22 +

1

2
(au(t), u(t))2 −

1

p
∥u(t)∥pp

=
1

2
∥ut(t)∥22 +

1

2
I(u(t)) +

p− 2

2p
∥u(t)∥pp

≤1

2
∥ut(t)∥22 +

1

2
I(u(t)) +

p− 2

2p
C1I(u(t))

≤1

2
∥ut(t)∥22 + C2I(u(t)).(5.15)

By integrating (5.15) over (t1, t2), we obtain∫ t2

t1

E(τ)dτ ≤ 1

2

∫ t2

t1

∥uτ (τ)∥22dτ + C2

∫ t2

t1

I(τ)dτ.

Hence, by (5.6) and (5.12), we have∫ t2

t1

E(τ)dτ

≤1

2
CD(t)2 + C2

{
2CD(t) sup

t1≤s≤t2

E(s)
1
2 + CD(t)2 + Sm

(
2p

(p− 2)A1

) 1
2

D(t)m−1 sup
t1≤s≤t2

E(s)
1
2

}
.(5.16)

Moreover, multiplying equation (1.1) by ut and then integrating it over [t, t2]× Ω, we get∫ t2

t

⟨uττ , uτ ⟩dτ +

∫ t2

t

∫
Ω

∆2uuτdxdydτ +

∫ t2

t

(au, uτ )dτ +

∫ t2

t

∫
Ω

|uτ |mdxdydτ

=

∫ t2

t

∫
Ω

|u|p−1uτdxdydτ,

which means

1

2
∥ut(t2)∥22 −

1

2
∥ut(t)∥22 +

1

2
∥ut(t2)∥2H 2

∗
− 1

2
∥ut(t)∥2H 2

∗
+

1

2
(au(t2), u(t2))−

1

2
(au(t), u(t))

+
1

p
∥u(t)∥pp −

1

p
∥u(t2)∥pp

=−
∫ t2

t

∥uτ (τ)∥mmdτ.

That is

E(t) = E(t2) +

∫ t2

t

∥uτ (τ)∥mmdτ.

Since t2 − t1 ≥ 1
2 , it follows that

E(t2) ≤ 2

∫ t2

t1

E(τ)dτ.

Then, thanks to (5.4), we arrive at

E(t) = E(t+ 1) +D(t)m ≤ E(t2) +D(t)m ≤ 2

∫ t2

t1

E(τ)dτ +D(t)m.
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Thus, by using (5.16), we see that

E(t) ≤2C2

{
2CD(t) sup

t1≤s≤t2

E(s)
1
2 + CD(t)2 + Sm

(
2p

(p− 2)A1

) 1
2

D(t)m−1 sup
t1≤s≤t2

E(s)
1
2

}
+ CD(t)2 +D(t)m

≤ (C + 2CC2)D(t)2 + 2C2

[
2CD(t) + Sm

(
2p

(p− 2)A1

) 1
2

D(t)m−1

]
sup

t1≤s≤t2

E(s)
1
2 +D(t)m

≤ (C + 2CC2)D(t)2 + 2C2

[
2CD(t) + Sm

(
2p

(p− 2)A1

) 1
2

D(t)m−1

]
E(t)

1
2 +D(t)m, t ≥ 0.

Using Young’s inequality, we deduce

(5.17) E(t) ≤ C3

[
D(t)2 +D(t)m +D(t)2(m−1)

]
,

where C3 is some positive constant. From (5.4) and (5.17), we get

E(t) ≤ C3

[
1 +D(t)m−2 +D(t)2m−4

]
D(t)2 ≤ C3

[
1 + E(0)

m−2
m + E(0)

2m−4
m

]
D(t)2.

This implies that

E(t)
m
2 ≤ (C4 (E(0)))

m
2 D(t)m,

where C4 (E(0)) = C3

[
1 + E(0)

m−2
m + E(0)

2m−4
m

]
. Note that lim

E(0)→0
C4 (E(0)) = C3 > 0. Hence, by

applying Lemma 5.2, we have

(5.18) E(t) ≤
(
E(0)−

m−2
2 +

(m− 2)τ

2
[t− 1]

+

)− 2
m−2

on [0,∞),

where τ = (C4 (E(0)))
−m

2 . Consequently, by (5.1) we immediately have

lim
t→∞

(
∥u(t)∥2H 2

∗
+ (au(t), u(t))2 + ∥ut(t)∥22

)
= 0,

which combining with Lemma 2.2 tells us that

lim
t→∞

(
∥u(t)∥H 2

∗
+ ∥ut(t)∥2

)
= 0.

(Necessity). If Tmax = ∞, lim
t→∞

(
∥u(t)∥H 2

∗
+ ∥ut(t)∥2

)
= 0 and

E(t) ≤
(
E(0)−

m−2
2 +

(m− 2)τ

2
[t− 1]+

)− 2
m−2

,

then by Lemma 2.1, 2.2, we have

lim
t→∞

∥u(t)∥p = 0 and lim
t→∞

(
∥u(t)∥H 2

∗
+ (au(t), u(t))2 + ∥ut(t)∥2

)
= 0,

which imply that

lim
t→∞

E(t) = 0.

By Lemma 2.4 and the above mentioned results, there must be t0 > 0 such that E(t0) < D with
u(t0) ∈ W . �
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6. Blow up

In this section, we prove the blow-up properties of solutions.

Theorem 6.1. Let u be the unique local weak solution to problem (1.1)-(1.2). Suppose that p > m ≥ 2
and −Λ1 < a1 ≤ a ≤ a2 hold. The initial data (u0, u1) ∈ H 2

∗ (Ω)× L2(Ω) are given. If there exists a real
number t0 ∈ [0, Tmax) such that

u(t0) ∈ U and E(t0) < D,

then u blows up, that is,
Tmax < ∞.

Proof. Assume that there exists a real number t0 ∈ [0, Tmax) such that

u(t0) ∈ U and E(t0) < D.

Without loss of generality, we may suppose that t0 = 0, then

u(t) ∈ U and E(t) < D, for every t ∈ [0, Tmax).

Indeed, (2.9) entails that

(6.1) E(t) ≤ E(0) < D, for all t > 0.

Then suppose that there exists t̄ > 0 such that u (t̄) ∈ N , but by (2.7),

d ≤ J (u (t̄)) ≤ E (t̄) < D,

which is a contradiction to (6.1), and therefore u(t) ∈ U for all t ∈ [0, Tmax).
We divide our proof into two cases:

Case 1. Assume that u(t) ∈ U and 0 ≤ E(t) < D, for every t ∈ [0, Tmax).

From (2.8), we know that

E(t) =
1

2
∥u(t)∥2H 2

∗
+

1

2
∥ut(t)∥22 +

1

2
(au(t), u(t))2 −

1

p
∥u(t)∥pp

≥A1

2
∥u(t)∥2H 2

∗
+

1

2
∥ut(t)∥22 −

1

p
Sp
p∥u(t)∥

p
H 2

∗
.

We define a functional ε(t) as follows:

ε(t) := ε(u(t)) =
A1

2
∥u(t)∥2H 2

∗
+

1

2
∥ut(t)∥22.

Thus,

∥u(t)∥H 2
∗
≤
(

2

A1
ε(t)

) 1
2

.

So,

E(t) ≥ ε(t)− 1

p
Sp
p

(
2

A1
ε(t)

) p
2

= ε(t)− 1

p

(
2

A1
S2
pε(t)

) p
2

,(6.2)

for t ∈ [0, Tmax).
Let us define the function F : R+ → R by

F (y) = y − 1

p

(
2

A1
S2
py

) p
2

.

By some simple calculations, we find that F (y) obtains its maximum in [0,∞) at y = y0, where

y0 =
1

2
A

p
p−2

1 S
− 2p

p−2
p ,

and the maximum value of F (y) is

F (y0) =
p− 2

2p
A

p
p−2

1 S
− 2p

p−2
p = D.
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Then inequality (6.2) takes the concise form

(6.3) E(t) ≥ F (ε(t)), for t ∈ [0, Tmax).

Since the continuous function F (y) attains its maximum value at y = y0, it is monotone decreasing when
y > y0. Due to the fact that E(0) < D = F (y0), there exists a unique number y1 such that

(6.4) F (y1) = E(0), with y1 > y0 > 0.

Therefore, we have

(6.5) D > F (y1) = E(0) ≥ E(t) ≥ F (ε(t)), for t ∈ [0, Tmax).

We aim to show that ε(0) > y0.
Indeed, we have proved that u(t) ∈ U for all t ∈ [0, Tmax), then I(u0) < 0, which means

∥u0∥2H 2
∗
+ (au0, u0)2 − ∥u0∥pp < 0.

By using Lemma 2.1 and 2.2, we have

A1∥u0∥2H 2
∗
< Sp

p∥u0∥pH 2
∗
,

that is

∥u0∥H 2
∗
>

(
A1

Sp
p

) 1
p−2

.

Since ε(t) =
A1

2
∥u(t)∥2H 2

∗
+

1

2
∥ut(t)∥22 ≥ A1

2
∥u(t)∥2H 2

∗
, we have

(6.6) ε(0) ≥ A1

2
∥u0∥2H 2

∗
>

A1

2

(
A1

Sp
p

) 2
p−2

=
1

2
A

p
p−2

1 S
− 2p

p−2
p = y0.

Since F (y) is continuous and decreasing when y > y0 and ε(t) is also continuous, then by using (6.6),
it follows from (6.5) that

(6.7) ε(t) ≥ y1, for t ∈ [0, Tmax).

Consequently,

1

p
∥u(t)∥pp =

1

2
∥u(t)∥2H 2

∗
+

1

2
∥ut(t)∥22 +

1

2
(au(t), u(t))2 − E(t)

≥A1

2
∥u(t)∥2H 2

∗
+

1

2
∥ut(t)∥22 − E(t)

=ε(t)− E(t) ≥ y1 − F (y1) =
1

p

(
2

A1
S2
py1

) p
2

,

which can be reduced to

(6.8) ∥u(t)∥pp ≥
(

2

A1
S2
py1

) p
2

, for t ∈ [0, Tmax).

Now we set G(t) = D − E(t) > 0 and N(t) = 1
2∥u(t)∥

2
2 for t ∈ [0, Tmax). We aim to show that

(6.9) Y (t) = G1−α(t) + ϵN ′(t)

blows up in finite time, for some α ∈ (0, 1) and ϵ > 0, which will be selected later. By differentiating
both sides of (6.9), one has

(6.10) Y ′(t) = (1−α)G−α(t)G′(t)+ϵ

[
∥ut(t)∥22 − ∥u(t)∥2H 2

∗
− (au(t), u(t))2 −

∫
Ω

|ut|m−1udx+ ∥u(t)∥pp
]
.
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By using (6.7) and the fact that D = F (y0) =
p− 2

2p
A

p
p−2

1 S
− 2p

p−2
p , we obtain

G(t) = D − E(t) ≤D − ε(t) +
1

p
∥u(t)∥pp

≤y0 −
1

p

(
2

A1
S2
py0

) p
2

− y1 +
1

p
∥u(t)∥pp

=(y0 − y1)−
1

p

(
2

A1
S2
py0

) p
2

+
1

p
∥u(t)∥pp

<− 1

p

(
2

A1
S2
py0

) p
2

+
1

p
∥u(t)∥pp,

since y1 > y0. The last inequality can be expressed as

(6.11) ∥u(t)∥pp > pG(t) +

(
2

A1
S2
py0

) p
2

.

Also, since G(t) = D − E(t), then by the energy identity (2.9), we have

(6.12) G′(t) = −E′(t) = ∥ut(t)∥mm,

which shows that G(t) is nondecreasing for t ∈ [0, Tmax). By applying Hö lder’s and Young’s inequalities,
and using the assumption that p > m, we obtain∣∣∣∣ ∫

Ω

|ut|m−1udx

∣∣∣∣ ≤∥u(t)∥m∥ut(t)∥m−1
m

≤C∥u(t)∥p∥ut(t)∥m−1
m

=C∥u(t)∥1−
p
m

p

(
∥u(t)∥

p
m
p ∥ut(t)∥m−1

m

)
≤CG(t)

1
p−

1
m

(
∥u(t)∥

p
m
p ∥ut(t)∥m−1

m

)
≤λG(t)

1
p−

1
m ∥u(t)∥pp + CλG(t)

1
p−

1
m ∥ut(t)∥mm

≤λG(0)
1
p−

1
m ∥u(t)∥pp + CλG(0)

1
p−

1
m+αG(t)−αG′(t),(6.13)

where we choose 0 < α < 1
m − 1

p , and λ is a positive constant which will be selected later. Thus,

Y ′(t) ≥
[
1− α− ϵCλG(0)

1
p−

1
m+α

]
G(t)−αG′(t)

+ ϵ
[
∥ut(t)∥22 − ∥u(t)∥2H 2

∗
− (au(t), u(t))2 +

(
1− λG(0)

1
p−

1
m

)
∥u(t)∥pp

]
.(6.14)

Since

∥u(t)∥2H 2
∗
+ (au(t), u(t))2 = 2E(t) +

2

p
∥u(t)∥pp − ∥ut(t)∥22,

we have

Y ′(t) ≥
[
1− α− ϵCλG(0)

1
p−

1
m+α

]
G(t)−αG′(t)

+ ϵ

[
2∥ut(t)∥22 +

(
1− λG(0)

1
p−

1
m − 2

p

)
∥u(t)∥pp − 2E(t)

]
,(6.15)

for t ∈ [0, Tmax).
Next, we aim to show that(

1− 2

p

)
∥u(t)∥pp − 2E(t) > c∥u(t)∥pp, for all t ∈ [0, Tmax),
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for some c > 0. For the sake of convenience, we put

(6.16) C0 =

(
2

A1
S2
py1

) p
2

.

Then we have

(6.17) 0 ≤ E(t) ≤ E(0) = F (y1) = y1 −
1

p

(
2

A1
S2
py1

) p
2

= y1 −
1

p
C0,

for t ∈ [0, Tmax).

Now we split the term

(
1− 2

p

)
∥u(t)∥pp into two positive parts:

(6.18)
p− 2

p
∥u(t)∥pp =

(
p− 2

p
− C0 − 2y1

2C0

)
∥u(t)∥pp +

C0 − 2y1
2C0

∥u(t)∥pp.

The fact that the two terms on the right-hand side of (6.18) are both positive from the following straight-

forward calculations. Indeed, by (6.16) and the fact that y1 > y0 =
1

2
A

p
p−2

1 S
− 2p

p−2
p , we compute

C0 − 2y1 =

[(
2

A1
S2
p

) p
2

y
p
2−1
1 − 2

]
y1

>

[(
2

A1
S2
p

) p
2

y
p
2−1
0 − 2

]
y1

=

[(
2

A1
S2
p

) p
2
(
1

2
A

p
p−2

1 S
− 2p

p−2
p

) p−2
2

− 2

]
y1

=
[
2A

− p
2+

p
2

1 Sp−p
p − 2

]
y1 = 0,(6.19)

and

p− 2

p
− C0 − 2y1

2C0
=
2C0(p− 2)− p(C0 − 2y1)

2C0p
=

C0(p− 2) + 2py1 − 2C0

2C0p

=
C0(p− 2) + 2(py1 − C0)

2C0p
=

C0(p− 2) + pF (y1)

2C0p
≥ 0.(6.20)

Thus, we can define the positive constant c as

(6.21) c :=
C0 − 2y1

2C0
> 0.

Applying (6.20) and (6.21) along with the fact that ∥u(t)∥pp ≥ C0 from (6.8), we obtain from (6.18) that

(6.22)
p− 2

p
∥u(t)∥pp ≥

(
p− 2

p
− C0 − 2y1

2C0

)
C0 + c∥u(t)∥pp.

By using (6.17) and (6.22), we calculate

p− 2

p
∥u(t)∥pp − 2E(t) ≥

(
p− 2

p
− C0 − 2y1

2C0

)
C0 + c∥u(t)∥pp − 2E(t)

≥
(
p− 2

p
− C0 − 2y1

2C0

)
C0 − 2y1 +

2

p
C0 + c∥u(t)∥pp

=
C0

2
− y1 + c∥u(t)∥pp

≥c∥u(t)∥pp,(6.23)

where the last inequality follows from (6.19).
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Applying (6.23) to (6.15) yields

Y ′(t) >
[
1− α− ϵCλG(0)

1
p−

1
m+α

]
G(t)−αG′(t)

+ ϵ
[
2∥ut(t)∥22 +

(
c− λG(0)

1
p−

1
m

)
∥u(t)∥pp

]
.(6.24)

Now, we choose λ > 0 such that λG(0)
1
p−

1
m =

c

2
and select ϵ > 0 sufficiently small so that ϵCλG(0)

1
p−

1
m+α ≤

1− α, we obtain from (6.24) that

(6.25) Y ′(t) ≥ ϵ

2

[
2∥ut(t)∥22 + c∥u(t)∥pp

]
, for t ∈ [0, Tmax).

Combining the estimates (6.25) and (6.11) yields that

(6.26) Y ′(t) ≥ ϵ

2

[
2∥ut(t)∥22 +

c

2
∥u(t)∥pp +

c

2
pG(t)

]
> 0,

for t ∈ [0, Tmax), where the last inequality is due to the fact that G(t) = D − E(t) > 0.
Notice that Y (0) = G(0)1−α + ϵN ′(0), and if N ′(0) < 0, then we shall further impose the restriction

0 < ϵ ≤ −G(0)1−α

2N ′(0)
so that Y (0) ≥ 1

2G(0)1−α. Since Y (t) is increasing on [0, Tmax) by virtue of (6.26),

it follows that

(6.27) Y (t) ≥ Y (0) ≥ 1

2
G(0)1−α > 0, for t ∈ [0, Tmax).

Since Y (t) = G(t)1−α + ϵN ′(t), if we let ϵ ≤ 1, it follows that

(6.28) Y (t)
1

1−α ≤ C
(
G(t) + |N ′(t)|

1
1−α

)
, for t ∈ [0, Tmax).

By the Cauchy-Schwarz and Young’s inequalities, we have

(6.29) |N ′(t)|
1

1−α ≤ ∥ut(t)∥
1

1−α

2 ∥u(t)∥
1

1−α

2 ≤ C∥ut(t)∥
1

1−α

2 ∥u(t)∥
1

1−α
p ≤ C

(
∥ut(t)∥22 + ∥u(t)∥

2
1−2α
p

)
.

Notice that

(6.30) ∥u(t)∥
2

1−2α
p =

(
∥u(t)∥pp

) 2
(1−2α)p =

(
∥u(t)∥pp

) 2
(1−2α)p

−1 ∥u(t)∥pp.

Now we impose an extra restriction on α:

0 < α <
p− 2

2p
,

then σ := 1− 2

(1− 2α)p
> 0. By virtue of (6.11) and the fact that G(t) is nondecreasing for t ∈ [0, Tmax),

and letting 0 < ϵ ≤ G(0), it follows from (6.30) that

∥u(t)∥
2

1−2α
p =

(
∥u(t)∥pp

)−σ ∥u(t)∥pp ≤ CG(t)−σ∥u(t)∥pp ≤ CG(0)−σ∥u(t)∥pp ≤ Cϵ−σ∥u(t)∥pp.

By substituting the above inequality into (6.29), one has

(6.31) |N ′(t)|
1

1−α ≤ C
(
∥ut(t)∥22 + ϵ−σ∥u(t)∥pp

)
, for t ∈ [0, Tmax).

Since ϵ ≤ 1 and σ > 0, then

|N ′(t)|
1

1−α ≤ Cϵ−σ
(
∥ut(t)∥22 + ∥u(t)∥pp

)
, for t ∈ [0, Tmax),

and along with (6.28), it follows that

(6.32) Y (t)
1

1−α ≤ Cϵ−σ
(
G(t) + ∥ut(t)∥22 + ∥u(t)∥pp

)
, for t ∈ [0, Tmax).

By taking into account inequalities (6.26) and (6.32), we see that

Y ′(t) ≥ C(p,E(0))ϵ1+σY (t)
1

1−α , for t ∈ [0, Tmax),
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and since 1
1−α > 1, we conclude that Tmax is necessarily finite. More precisely,

Tmax <
1− α

α
ϵ−(1+σ)C(p,E(0))Y (0)−

α
1−α ≤ 1− α

α
ϵ−(1+σ)C(p,E(0))G(0)−α,

where the last inequality comes from (6.27).

Case 2. Assume that u(t) ∈ U and E(t) < 0, for every t ∈ [0, Tmax).

In this case, we put G(t) = −E(t) and N(t) = 1
2∥u(t)∥

2
2. We also aim to show that

(6.33) Y (t) = G(t)1−α + ϵN ′(t)

blows up in finite time, for some α ∈ (0, 1) and ϵ > 0, which will be selected later.
We calculate

(6.34) Y ′(t) = (1− α)G(t)−αG′(t) + ϵN ′′(t),

where

(6.35) N ′′(t) = ∥ut(t)∥22 − ∥u(t)∥2H 2
∗
− (au(t), u(t))2 −

∫
Ω

|ut|m−1udx+ ∥u(t)∥pp.

The next step is to find an appropriate lower bound of right-hand side of (6.35). By applying Hölder’s
and Young’s inequalities, and using the assumption that the source is stronger than damping, i.e., p > m,
we obtain

(6.36)

∣∣∣∣ ∫
Ω

|ut|m−1udx

∣∣∣∣ ≤ ∥u(t)∥m∥ut(t)∥m−1
m ≤ C∥u(t)∥p∥ut(t)∥m−1

m .

Since G(t) = −E(t), we have

(6.37) G′(t) = ∥ut(t)∥mm ≥ 0.

Thus, G(t) is nondecreasing for t ∈ [0, Tmax). Moreover, by (2.8),

(6.38) G(t) = −E(t) ≤ −A1

2
∥u(t)∥2H 2

∗
− 1

2
∥ut(t)∥22 +

1

p
∥u(t)∥pp ≤ 1

p
∥u(t)∥pp.

Now, by applying (6.38) to inequality (6.36) and invoking the assumption p > m, we deduce∣∣∣∣ ∫
Ω

|ut|m−1udx

∣∣∣∣ ≤C∥u(t)∥1−
p
m

p

(
∥u(t)∥

p
m
p ∥ut(t)∥m−1

m

)
≤CG(t)

1
p−

1
m

(
∥u(t)∥

p
m
p ∥ut(t)∥m−1

m

)
≤λG(t)

1
p−

1
m ∥u(t)∥pp + CλG(t)

1
p−

1
m ∥ut(t)∥mm,(6.39)

where we have used the Young’s inequality and the value of the positive number λ will be determined
later. By selecting

0 < α <
1

m
− 1

p
,

and using (6.37), we obtain∣∣∣∣ ∫
Ω

|ut|m−1udx

∣∣∣∣ ≤λG(t)
1
p−

1
m ∥u(t)∥pp + CλG(t)

1
p−

1
m+αG(t)−α∥ut(t)∥mm

≤λG(0)
1
p−

1
m ∥u(t)∥pp + CλG(0)

1
p−

1
m+αG(t)−αG′(t).(6.40)

By employing (6.40), we obtain from (6.35) that

N ′′(t) ≥∥ut(t)∥22 − ∥u(t)∥2H 2
∗
− (au(t), u(t))2

+
(
1− λG(0)

1
p−

1
m

)
∥u(t)∥pp − CλG(0)

1
p−

1
m+αG(t)−αG′(t).(6.41)

Since

E(t) =
1

2
∥u(t)∥2H 2

∗
+

1

2
(au(t), u(t))2 +

1

2
∥ut(t)∥22 −

1

p
∥u(t)∥pp,
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we have

N ′′(t) ≥2∥ut(t)∥22 +
(
1− λG(0)

1
p−

1
m − 2

p

)
∥u(t)∥pp

− CλG(0)
1
p−

1
m+αG(t)−αG′(t)− 2E(t),(6.42)

for t ∈ [0, Tmax). We choose λ > 0 such that

λG(0)
1
p−

1
m =

p− 2

2p
,

then inequality (6.42) can be reduced to

N ′′(t) ≥ 2∥ut(t)∥22 +
p− 2

2p
∥u(t)∥pp − CλG(0)

1
p−

1
m+αG(t)−αG′(t) + 2G(t),

for all t ∈ [0, Tmax). Now, since Y ′(t) = (1− α)G(t)−αG′(t) + ϵN ′′(t), if we select ϵ > 0 small enough so
that

ϵCλG(0)
1
p−

1
m+α ≤ 1− α,

then one has

(6.43) Y ′(t) ≥ 2ϵ∥ut(t)∥22 + 2ϵG(t) +
p− 2

2p
ϵ∥u(t)∥pp,

for t ∈ [0, Tmax).
Recall that G(0) = −E(0) > 0, and since G(t) is nondecreasing by (6.37), it follows that G(t) > 0 for

t ∈ [0, Tmax). Thanks to (6.43), we have Y ′(t) > 0, i.e., Y (t) is monotone increasing for t ∈ [0, Tmax).
Note that Y (0) = G(0)1−α + ϵN ′(0). In case N ′(0) < 0, in order to make sure that Y (0) > 0, we shall
impose an extra restriction on ϵ:

0 < ϵ ≤ −G(0)1−α

2N ′(0)
.

As a result,

(6.44) Y (t) ≥ Y (0) ≥ 1

2
G(0)1−α > 0, for all t ∈ [0, Tmax).

Also, by following the estimates (6.28)-(6.32) in Case 1, and by imposing the additional restrictions
on α and ϵ, namely, 0 < α < p−2

2p and 0 < ϵ ≤ min{G(0), 1}, we obtain

(6.45) Y (t)
1

1−α ≤ Cϵ−σ
(
G(t) + ∥ut(t)∥22 + ∥u(t)∥pp

)
, for t ∈ [0, Tmax),

where σ = 1− 2
(1−2α)p > 0.

By taking into account inequalities (6.43) and (6.45), we see that

Y ′(t) ≥ ϵ1+σC(p)Y (t)
1

1−α , for t ∈ [0, Tmax),

and since 1
1−α > 1, we conclude that Tmax is necessarily finite. More precisely,

Tmax <
1− α

α
ϵ−(1+σ)C(p)Y (0)−

α
1−α ≤ 1− α

α
ϵ−(1+α)C(p)G(0)−α,

where the last inequality is due to (6.44).
The proof is completed.

�
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7. Lower bound for blow-up time

In this section, we present the lower bound of the blow-up time Tmax.

Theorem 7.1. Under the same assumptions as in Theorem 6.1. If u occurs blow-up at a finite time
Tmax, then

Tmax ≥
∫ ∞

F (0)

dy

pE(0) + y +
pS

2(p−1)
2(p−1)2

2p−4

Ap−1
1

E(0)p−1 +
S
2(p−1)
2(p−1)2

2p−4

Ap−1
1 pp−2

yp−1

.

Proof. First, due to the fact that −Λ1 < a1 ≤ a ≤ a2 and Λ1 > 0, we have A1 > 0. Then by Lemma 2.2,
we have

(7.1)
A1

2
∥u(t)∥2H 2

∗
+

1

2
∥ut(t)∥22 ≤ E(t) +

1

p
∥u(t)∥pp ≤ E(0) +

1

p
∥u(t)∥pp.

In order to obtain the lower bound of the blow-up time Tmax, we define the auxiliary functional as
follow:

F (t) := F (u(t)) =

∫
Ω

|u|pdx.

It is easy to obtain that F ′(t) = p

∫
Ω

|u|p−2uutdx.

Using Cauchy’s inequality, we have

F ′(t) = p

∫
Ω

|u|p−2uutdx ≤ p

2

(∫
Ω

|ut|2dx+

∫
Ω

|u|2(p−1)dx

)
.

By Lemma 2.1 and (7.1), we have

F ′(t) ≤p

2

(
∥ut(t)∥22 + S

2(p−1)
2(p−1)∥u(t)∥

2(p−1)
H 2

∗

)
≤p

2

(
2E(0) +

2

p
F (t) + S

2(p−1)
2(p−1)

[
2

A1

(
E(0) +

1

p
F (t)

)]p−1
)

≤p

2

(
2E(0) +

2

p
F (t) + S

2(p−1)
2(p−1)

(
2

A1

)p−1

2p−2

(
E(0)p−1 +

(
F (t)

p

)p−1
))

=pE(0) + F (t) +
pS

2(p−1)
2(p−1)2

2p−4

Ap−1
1

E(0)p−1 +
S
2(p−1)
2(p−1)2

2p−4

Ap−1
1 pp−2

F (t)p−1(7.2)

Since lim
t→T−

max

F (t) = ∞, we can get the following lower bound of the blow-up time Tmax from (7.2):

Tmax ≥
∫ ∞

F (0)

dy

pE(0) + y +
pS

2(p−1)
2(p−1)2

2p−4

Ap−1
1

E(0)p−1 +
S
2(p−1)
2(p−1)2

2p−4

Ap−1
1 pp−2

yp−1

.

The proof is completed. �
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Simon Stevin 5 (1998), no. 4, 583–594.

[10] A. Guesmia, Energy decay for a damped nonlinear coupled system, J. Math. Anal. Appl. 239 (1999), no. 1, 38–48.
[11] F. Gazzola, Nonlinearity in oscillating bridges, Electron. J. Differential Equations 2013, No. 211, 47 pp.

[12] V. Georgiev and G. Todorova, Existence of a solution of the wave equation with nonlinear damping and source terms,
J. Differential Equations 109 (1994), no. 2, 295–308.

[13] A. Haraux and E. Zuazua, Decay estimates for some semilinear damped hyperbolic problems, Arch. Rational Mech.
Anal. 100 (1988), no. 2, 191-206.

[14] R. Ikehata, Some remarks on the wave equations with nonlinear damping and source terms, Nonlinear Anal. 27 (1996),
no. 10, 1165–1175.

[15] J.-R. Kang, Global attractor for suspension bridge equations with memory, Math. Methods Appl. Sci. 39 (2016), no. 4,
762–775.

[16] V. Komornik, Well-posedness and decay estimates for a Petrovsky system by a semigroup approach, Acta Sci. Math.
(Szeged) 60 (1995), no. 3-4, 451–466.
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