Degtyareva, V.F.; Afonikova, N.S. Simple Metal and Binary Alloy Phases Based on the fcc Structure: Electronic Origin of Distortions, Superlattices and Vacancies. Crystals2017, 7, 34.
Degtyareva, V.F.; Afonikova, N.S. Simple Metal and Binary Alloy Phases Based on the fcc Structure: Electronic Origin of Distortions, Superlattices and Vacancies. Crystals 2017, 7, 34.
Degtyareva, V.F.; Afonikova, N.S. Simple Metal and Binary Alloy Phases Based on the fcc Structure: Electronic Origin of Distortions, Superlattices and Vacancies. Crystals2017, 7, 34.
Degtyareva, V.F.; Afonikova, N.S. Simple Metal and Binary Alloy Phases Based on the fcc Structure: Electronic Origin of Distortions, Superlattices and Vacancies. Crystals 2017, 7, 34.
Abstract
Crystal structures of simple metals and binary alloy phases based on the face-centered cubic (fcc) structure are analyzed within the model of Fermi sphere – Brillouin zone interactions to understand the stability of original cubic structure and derivative structures with distortions, superlattices and vacancies. Examination of the Brillouin-Jones configuration in relation to the nearly-free electron Fermi sphere for several representative phases reveals significance of the electron energy contribution to the phase stability. Representation of complex structures in the reciprocal space clarifies their relationship to the basic cubic cell.
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.