Preprint Article Version 1 NOT YET PEER-REVIEWED

Some Algebraic Polynomials and Topological Indices of Octagonal Network

Version 1 : Received: 22 November 2016 / Approved: 24 November 2016 / Online: 24 November 2016 (01:53:31 CET)

How to cite: Kwun, Y.; Nazeer, W.; Munir, M.; Kang, S. Some Algebraic Polynomials and Topological Indices of Octagonal Network. Preprints 2016, 2016110118 (doi: 10.20944/preprints201611.0118.v1). Kwun, Y.; Nazeer, W.; Munir, M.; Kang, S. Some Algebraic Polynomials and Topological Indices of Octagonal Network. Preprints 2016, 2016110118 (doi: 10.20944/preprints201611.0118.v1).

Abstract

M-polynomial of different molecular structures helps to calculate many topological indices. A topological index of graph G is a numerical parameter related to G which characterizes its molecular topology and is usually graph invariant. In the field of quantitative structure-activity (QSAR) quantitative structure-activity structure-property (QSPR) research, theoretical properties of the chemical compounds and their molecular topological indices such as the Zagreb indices, Randic index, Symmetric division index, Harmonic index, Inverse sum index, Augmented Zagreb index, multiple Zagreb indices etc. are correlated. In this report, we compute closed forms of M-polynomial, first Zagreb polynomial and second Zagreb polynomial of Octagonal network. From the M-polynomial we recover some degree-based topological indices for Octagonal network. Moreover, we give a graphical representation of our results.

Subject Areas

M-polynomial; Zagreb polynomial; topological index; network

Readers' Comments and Ratings (0)

Leave a public comment
Send a private comment to the author(s)
Rate this article
Views 0
Downloads 0
Comments 0
Metrics 0
Leave a public comment

×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.