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Abstract: M-polynomial of different molecular structures helps to calculate many topological
indices. A topological index of graph G is a numerical parameter related to G which characterizes
its molecular topology and is usually graph invariant. In the field of quantitative structure-activity
(QSAR) quantitative structure-activity structure-property (QSPR) research, theoretical properties
of the chemical compounds and their molecular topological indices such as the Zagreb indices,
Randic index, Symmetric division index, Harmonic index, Inverse sum index, Augmented Zagreb
index, multiple Zagreb indices etc. are correlated. In this report, we compute closed forms of
M-polynomial, first Zagreb polynomial and second Zagreb polynomial of Octagonal network.
From the M-polynomial we recover some degree-based topological indices for Octagonal network.
Moreover, we give a graphical representation of our results.
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1. Introduction

Chemical reaction network theory is an area of applied mathematics that attempts to model the
behavior of real-world chemical systems. Since its foundation in the 1960s, it has attracted a
growing research community, mainly due to its applications in biochemistry and theoretical
chemistry. It has also attracted interest from pure mathematicians due to the problems that arise
from the mathematical structures.

Cheminformatics is an emerging field in which quantitative structure-activity (QSAR) and
Structure-property (QSPR) relationships predict the biological activities and properties of
nanomaterial see [1-4]. In these studies, some physcio-chemical properties and topological indices
are used to predict bioactivity of the chemical compounds see [5-7].

The branch of chemistry which deals with the chemical structures with the help of
mathematical tools is called mathematical chemistry. Chemical graph theory is that branch of
mathematical chemistry which applies graph theory to mathematical modeling of chemical
phenomena. In chemical graph theory a molecular graph is a simple graph (having no loops and
multiple edges) in which atoms and chemical bonds between them are represented by vertices and

edges respectively. A graph G(V,E) with vertex set V(G) and edge set E(G) is connected, if there

exist a connection between any pair of vertices in G.
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A network is simply a connected graph having no multiple edges and loops. A chemical graph
is a graph whose vertices denote atoms and edges denote bonds between those atoms of any
underlying chemical structure. The degree of a vertex is the number of vertices which are connected
to that fixed vertex by the edges. In a chemical graph the degree of any vertex is at most 4. The
distance between two vertices u and v is denoted as d(u,v) =d;(u,v) and is the length of shortest
path between u and v in graph G. The number of vertices of G, adjacent to a given vertex v, is the
“degree” of this vertex, and will be denoted by d, . The concept of degree in graph theory is closely
related (but not identical) to the concept of valence in chemistry. For details on basics of graph

theory, any standard text such as [3] can be of great help.

Several algebraic polynomials have useful applications in chemistry such as Hosoya
Polynomial (also called Wiener polynomial) [8] that plays a vital role in determining distance-based
topological indices. Among other algebraic polynomials, M-polynomial [4], introduced in 2015

plays the same role in determining many degree-based topological indices.
Definition 1. Let G be a simple connected graph. The M-polynomial of G is defined as:

M (G,x,y)= Z mij(G)xiyj.
S<i<j<A

Where & =Min{d, [ve V (G)}, A=Max{d, |ve V (G)},andm,(G) is the edge vue E(G)

such that {dv,du} ={i,j}.

This polynomial is one of the key areas of interest in computational aspects of materials. From this
M-polynomial, we can calculate many topological indices. M-polynomial of different molecular
structures has been computed in [9-12]. The topological index of a molecule structure can be
considered as a non-empirical numerical quantity which quantifies the molecular structure and its
branching pattern in many ways. In this point of view, the topological index can be regarded as a
score function which maps each molecular structure to a real number and is used as a descriptor of
the molecule under testing [13-16]. Topological indices give good predictions of the variety of
physico-chemical properties of chemical compounds containing boiling point, the heat of
evaporation, heat of formation, chromatographic retention times, surface tension, vapor pressure
etc. Since the 1970s, two degree based graph invariants have been extensively studied. These are the
first Zagreb index M1 and the second Zagreb index M2, introduced by Gutman and Trinajstic [17]
and are defined as: M| (G)= > (d,)*’andM,(G)= D d,d,.

VeV (G) uve E(G)
Results obtained in the theory of Zagreb indices are summarized in the review [18].

Second modified Zagreb index is defined as:


http://dx.doi.org/10.20944/preprints201611.0118.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 November 2016 d0i:10.20944/preprints201611.0118.v1

30f18

1
mM2 (G): Z d d .
weE(G) “u™v

In 1998, working independently, Bollobas and Erdos [19] and Amic et al. [20] proposed general
Randic index. It has been extensively studied by both mathematicians and theoretical chemists
(See, for example, [21,22]). The Randic index is defined as:
Ry(G)= 3 (dd)",
ue E(G)
where at is an arbitrary real number.

Symmetric division index is defined as:

SDD(G) = {min(duadv) +max(du,dv)}
we E(G) max(d,,d,) min(d,,d,) ]|

Another variant of Randic index is the harmonic index defined as:

2
HG)= ), :
vue E(G) du + dV
The Inverse sum index is defined as:
d d
I(G)= >,
e £(G) %u Ty

The augmented Zagreb index is defined as:

3
u-v
A(G) = 2 {— a ‘12}

vue E(G)

and it is useful for computing heat of formation of alkanes [23,24]

These topological indices can be recovered from M-polynomial [4], see following table 1.

Table 1. Derivation of some degree-based topological indices from M-polynomial

Topological Index Derivation from M(G;x,y)
First Zagreb (Dy + Dy)(M(G; X, Y))|x=y=1
Second Zagreb (D,Dy)(M(G; %, ) lx=y=1
Second Modified Zagreb (SxSy)(M(G; %,Y)) lxzy=1
General Randi¢ a € N (Dng)(M(G; X, y))lx:yzl
Symmetric Division Index (DxSy + 5¢Dy) (M(G; x, y))|X:y:1
Harmonic Index 2S. T(M(G; xy))._,
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Inverse sum Index S ID. D (M(G ; x,y))
X x y > x=1
Augmented Zagreb Index g3 Q,JD D 3(M(G :X,Y))
x -2 x y > > x=1
A(f (x,¥) o(f (x.») (L) /(0 .
D = = = = ??] = i
where * 0 or Dy =y dy P £ t a3y .('). t A (f(x )= /().

O (f (%,7)) =1 (x.7)-

In 2013, Shirdel et al. in [25] proposed “hyper-Zagreb index” which is also degree based index.
Definition 2.Let G be a simple connected graph. Then the hyper-Zagreb index of G is defined as

HM(G)= Y [d,+d,].
weE(G)

In 2012 Ghorbani and Azimi [26] proposed two new variants of Zagreb indices.

Definition 3. Let G be a simple connected graph. Then the first multiple Zagreb index of G is

defined as

PM(G)= ][] I[d,+d,].
uveE(G)

We refer [27] to the readers for more detail.

Definition 4.Let G be a simple connected graph. Then the second multiple Zagreb index of G is

defined as

PM,(G)= ] [d,+d,].
weE(G)

Definition 5. Let G be a simple connected graph. Then the first Zagreb polynomial of G is defined as

M (G.x)= > adutdv]
weE(G)

Definition 6. Let G be a simple connected graph. Then second Zagreb polynomial of G is defined as

M, (G,x)= z Adutdv],
uweE(G)

In this article, we compute M-polynomial, first Zagreb polynomial and second Zagreb
polynomial of Octagonal network shown in figure 1. We also compute some degree-based

topological indices.


http://dx.doi.org/10.20944/preprints201611.0118.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 November 2016 d0i:10.20944/preprints201611.0118.v1

50f18

We denote octagonal network by O forn,m > 2. The planer representation of O is shown
g Y Yim p P n,mj}

in figure 1 with m rows and n columns of octagonal. Let V is the vertex set and E is the edge set of

Oy, my - Then

V={x/; 1<i<2n—1, iisoddand 1< j <3m+1}U{x>/2; 1<i<2n, iisevenand 1< j<m+1}

3j-1

U ixy;, xzn,1<j<m}

and

E={x/x/"", 1<i<2n-1, iisoddand 1< j <3myuix/ 2 31 “2.1<i<2n-1, iisoddand 1< j<m+1}

Ux/ l3+]1 1<i<2n-2, zlsevenand1<_]<m}u{x3] 3j+1 ;3<i<2n-1,iisoddand 1<j<m}

Ui 1< <3m)

The number of vertices in octagonal network is (4m+2)n+2m and number of edges in an

octagonal network is (6m+1)n+m.

MAIN RESULTS

In this part we give our main computational results.
Theorem 1. Let Oy, ,,,y be the octagonal network. Then the M-polynomial of O,y is

M (DPZ,,x,y)= (2n+2m+4)x>y* +(4n+4m—8)x* y> + (6mn—5n—5m+4)x’ y°
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BT
Figure 1. The Octagonal network Oy, ,»
Proof. LetOy, ,, be the octagonal network. The edge set E(Oy, 1) is divided into three
edge partitions based on degrees of end vertices. The first edge partition £; (O{n’m})
contains 2n+2m+4 edgesuv, whered, =d, = 2. The second edge partition £,(Oy, ;1)
contains 4n+4m—8 edgesuv, where d,, =2, d, =3.The third edge partition
E5(Oyy,py) contains 6mn—>5n—5m+4 edgesuv, where d,, =d, =3. From definition 1

the M-polynomial of Oy, is given by
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M (O{”,m} ?x,y) = Zmijxiyj

i<j
2 2 23 3.3
=Zm22x y +Zm23x y +Zm33x y
2<2 2<3 3<3
2 2 23 3.3
= z My X"y~ + z My X"y~ + Z m33X"y
uVEEl(O{n,m}) uVEEz(O{n’m}) uVEE3(O{n,m})

=|E1 g )| 57 +|E2 (O )| 775 +|E3Op )|

=2n+2m+ 4)xzy2 +(4n+4m —8)x2y3 +(6mn—5n—5m+ 4)x3y3.

10
.1!
5000
1000
2000 I
1 -10 -5 0 5 10
0—. f X
2000—_ I:!E;,,lo::o'o'p’o’
100 7 <
-2 -2 -3
-10

Figure 2. 3D and implicit plot of the M-polynomial of Oy s,

Now we compute some degree-based topological indices from this M-polynomial.
Proposition 2. Let Oy, ,,, be the octagonal network. Then
1. M (O, ) =36mn-2m-2n.

2. MO ) =54mn-13m-13n+4.

1m 1112
3. "M,(O =—n+—m+—+=mn.
2Omm) =g M5

4. Ry (Opymy )= @n+2m+4)4" +(4n+4m—8)6" +(6mn—Sm—5n+4)9".

5. R (0 )=(2n+2m+4)+(4n+4m—8)+(6mn—5m—5n+4).
o \Y{n,m} 4a 60( 9a
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8§ 8§ 4
6. SSD(O =—n+—m-—+12mn.
Oppmy) =3 m+3m=3

14 14 2

7. H(O{n,m})=En+Em+—5+2mn.
7 7 2

8. I(O{nym})=—En—Em+§+9mn.

573 573 217 2187
9. A0, )=-212, 205, 2T 2187
Oy =" ™ g v 35 ™

Proof. Let MOy, 3%, 3) = f(x, )= (2n+2m+ 4)x2y2 +(4n+4m —8)x2y3 +(6mn—>5n—5m+ 4)x3y3.
Then

D, f(x,y)=22n+2m+ 4)xzy2 +2(4n+4m— 8)x2y3 +3(6mn—5n—5m+ 4)x3y3 ,
D, f(x,y)=2Q2n+2m+4)x>y* +3(4n+4m—8)x>y> +3(6mn—5Sn—5m+4)x’y’,

D, D, f(x,y)=42n+2m+4)x"y* +6(4n-+4m—8)x* > +9(6mn—5n—Sm+4)x’y*

2n+2m+4) x2y2 + (4n+4m-28) x2y3 N (6mn—5n—5m+4) x3y3,

Sy(f(x,y) = 5 3 3

(2"+im+4)x2y2+(4"+2m_8)x2y3+(6mn_5’19_5m+4)x3y3,

S8, (f(x,») =
Dya (f(x,)=2%2n+2m+ 4)x2y2 +3%@n+4m— 8)x2y3 +3%(6mn—"5n—"5m+ 4)x3y3

DD (f(x,)) =22 2n+2m+4)x7y* +273% (4n+ 4m—8)x°y” +3°% (6mn—Sn—5m +4)x°

_ (2n+2m+4) x2y2 + (4n+4m-28) x2y3 + (6mn—5n—5m+4) x3y3,
2% 3¢ 3

$,%(f(x,)

2m+4 4n+4m— —S5n—5m+4
(2n+2m+ )x2y2+( n+am 8)x2y3+(6mn Sn—5m+ )x3y3

ag o _
Sx Sy (f(x5y))_ 22a 2&30{ 320{

b

Sny (f(x,y)) = (211+2m-i—4)x2y2 -i—wxzy3 +(6mn—5n—5m+4)x3y3,

+(6mn—5n—5m+4)x3y3,.

SeDy, (f(x,9))=2n+2m+ 4)x*y? +w 2y3

JF(x, ) = 2n+2m+4)x* +(@n+4m—8)x> +(6mn—5n—5m+4)x°,

- —5n-5m+4
(2n+2m+4)x4+(4n+4m 8)x5+(6mn Sn—S5m+ )x6

S Jf(x,y)=
Jf(x,y) 4 5 6

B

JD.D., f(x,y) =42n+2m+4)x* +6(4n+4m—8)x> +9(6mn —5n—5m+4)x°,
D, f(x,y

SeJD, D, f(x,y) = (2n+2m+4)x* + 6(8n +54m =8) 5 26mn =3 Z —sm+4) 6

>
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D> f(x,y) =2 @n+2m+4)x>y* + 3 (4n+4m—8)xy> + 3> (6mn—5n—Sm+4)x’ >,
DD’ f(x,y)=2°Q@n+2m+4)x>y* +2°3 (4n+4m—8)x>y> +3°(6mn—5n—5m+4)xy?,
JDD f(x,y)=2°2n+2m+4)x* +2°3 (4n+4m—8)x +3°(6mn—5n—Sm+4)x°,

0,JD>D,> f(x,y) =2°2n+2m+4)x* +2°3 (4n+4m—8)x’ +3° (6mn —5n—5m+4)x*,

3% (6mn—5n—5m+4
S3IDSD} f(x,y) =23 @n+2m+4)x% +23 (dn+4m - 8)x’ + (6mn - m+d) 4
4

1.
M Oy ) =(Dy+D,,) f(x, y)‘x=y=1 = 36mn-2m-2n.

Figure 2. 3D and implicit plot for the first Zagreb index

M3 (O my) =D, D (f(x,)) ymyel =54mn-13m-13n+4.

Figure 3. 3D and implicit plot for the second Zagreb index


http://dx.doi.org/10.20944/preprints201611.0118.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 November 2016 do0i:10.20944/preprints201611.0118.v1

10 of 18
> "M, (O, ) =SS, (f(x ))| LS R g
2884y ) = xSy BV T8 T T 3
I
- - o ~—s 1
5
-to
Figure 4. 3D and implicit plot for the modified second Zagreb index
4.
R, (o{n,m} )=DEDY (f(x,) _ =Cns2ms 4)4% + (4n+4m—8)6% +(6mn—5m—5n+4)9%.
10
n 5
-10 5 10
-10
Figure 5. 3D and implicit plot for the Randic index for alpha=-1/2
5.

=S7sy _@n+2m+4) (4n+4m=8) (6mn—5m—>5n+4)
e L I
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10
5
-178 =176 -1.74 A72 -1.70 -168 -1.66 !
-5
-10
Figure 6. 3D and implicit plot for the generalized Randic index for alpha=8
6.
&8 8 4
SSD(Opy ) = (S, Dy + 8.0, ) (1 (x, y))‘ L T,
x=y=1 3 3 3
10
" 5
5 10
Figure 6. 3D and implicit plot for the Symmetric division index
7.

14 14 2
H(O{n’m} ) =28 J(f(x, ) ly=1= ICHAET AT S 2mn.


http://dx.doi.org/10.20944/preprints201611.0118.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 November 2016 do0i:10.20944/preprints201611.0118.v1

12 0f 18

-10 =3 0 T To
"

Figure 7. 3D and implicit plot for the Harmonic index

8.
7 7 2
I(O{n,m}) = SxJDny (f(X,y))le = 'En -Em +§+9mn.
10
n 5
-t = o 5 10
-5
-10
Figure 8. 3D and implicit plot for the Inverse Sum Index

9.

o3 343 _ 573 573 217 2187
A(O{n,m})_Sx Q—ZJDx Dy (f(xsy))—'6_4n'am ? 3—2
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Figure 9. 3D and implicit plot for the Augmented Zagreb index

Theorem 3. Let Oy, ,,,y be the octagonal network. Then the first and second Zagreb
polynomials of Oy, ,, are

1. g ( Oty x) = 6mnx® —5mx® —5nx® +4mx> +4nx +4x° + 2mx* +2mx* —8x +4x*,

5 i ( O{H,m},x) = 6mnx’ —5mx’ —5nx” +4x° +4mx® +4nx® —8x° + 2mx* + 2mx* +4x*.

Proof. Let Oy, ,,,, be the octagonal network. Then

1. by the definition the first Zagreb polynomial (Definition 5)
B (O x)= 3 A

quE( O{n,m})
= Z x[du +dv] + x[du +dv] + x[du +dv]
uVEEl(O{n,m}) uVEEz(O{n’m}) MVEE:;(O{n’m})

%El (O{n’m} ) | x4 + ‘Ez (O{n,m} )‘xs + ‘E?, (O{n,m} )‘ x6

=6mnx® —5mx® — 5nx® + 4mx> + 4nx +4x0 + 2mx* + 2mx* —8x° +4x*.

13 of 18
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Figure 10. 3D implicit plot of first Zagreb polynomial and Interactive plot with two parameters

2. Now by definition the second Zagreb polynomial (Definition 6)

Wy (Op )= Y 2lh

MVEE(O{n,m})
— Z x[dude] + x[dude] + Z x[dude]
MVEEl(O{n,m}) MVEEZ(O{n,m}) uveE3(O{n’m})

%El (O{n,m} ) | )C4 + ‘Ez (D{n,m} )‘X6 + ‘E3 (O{n,m} )‘ X9

=6mnx’ —5mx’ —5nx° +4x° + 4mx® + 4nx® —8x0 + 2mx* + 2mx?* +4x*.

-6 -2 0]

[5¥]
=

6

Figure 11. 3D implicit plot of second Zagreb polynomial and Interactive plot with two parameters

Proposition 12. LetOy,, ,,, be the octagonal network. Then the hyper-Zagreb index, first

multiple Zagreb index and the second multiple Zagreb index of Oy, ,,, are
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1. HM (D, ) 216mn-48m-48n+8.

331776

mn —5n—5m 4n+4m
2. PMI(D{n,m})—”%zsx 6656™" x6 x10 :

3. PMy(Dy, ;)= 31441™ x3710n710m g pbnedm,

Proof.

1. By definition of hyper-Zagreb index (Definition 2)

HM ( Otn,m} ) = z [du +d, ]2
uveE( O{n,m})

= Y e+ Y [deHd, P Y [do+d,]
uveEl(O{n,m}a%% uveEz(O{n,m}) uveE3(0{n,m})

= 16 | El (O{n,m} %+25‘E2 (‘D{n’m} )‘ + 6‘E3 (O{n,m} ')‘
=16(2n+2m+4)+25(4n+4m—8)+36(6mn—5n—5m+4)

= 216mn-48m-48n+38.

-10

Figure 12. 3D and implicit plot for hyper-Zagreb index

2. By the definition of first multiple Zagreb index (Definition 3)

PMI(@n,m})= H [ u+dv]
uveE( O{n,m})
= H [du+dv]>< H [du‘"dv]>< H [du+dv]
uveEl(@mm}) uveEz( O{n,m}) uveE3(H§n’m} )
_ 4|E1(H§{n,m})\ XS‘EZ(#@{n,m})‘ X6‘E3(#§{n,m} ')‘

=42n+2m+4 > 54n+4m—8 % 66mn—5n—5m+4

331776

390625 '
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Figure 14. 3D and implicit plot for second multiple Zagreb index
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CONCLUSIONS AND DISCUSSION

In this article we computed many topological indices for the octagonal network. At first, we
gave the general closed form of M-polynomial of this family and recover many degree-based
topological indices out of it. We also computed multiple Zagreb indices and Zagreb polynomials of
the octagonal network. We also gave graphs for the computed polynomials and topological
indices see figure 2-14. Our graphical representations of topological indices show the dependency
of the certain index on the structure. These results can play a vital role in determining properties of

this network and its uses in industry, electronics, and pharmacy.
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