Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

New Insights into the State Trapping of UV-Excited Thymine

Version 1 : Received: 15 November 2016 / Approved: 15 November 2016 / Online: 15 November 2016 (11:06:06 CET)

A peer-reviewed article of this Preprint also exists.

Stojanović, L.; Bai, S.; Nagesh, J.; Izmaylov, A.F.; Crespo-Otero, R.; Lischka, H.; Barbatti, M. New Insights into the State Trapping of UV-Excited Thymine. Molecules 2016, 21, 1603. Stojanović, L.; Bai, S.; Nagesh, J.; Izmaylov, A.F.; Crespo-Otero, R.; Lischka, H.; Barbatti, M. New Insights into the State Trapping of UV-Excited Thymine. Molecules 2016, 21, 1603.

Abstract

After UV excitation, gas phase thymine returns to ground state in 5 to 7 ps, showing multiple time constants. There is no consensus on the assignment of these processes, with a dispute between models claiming that thymine is trapped either in the first (S1) or in the second (S2) excited states. In the present study, nonadiabatic dynamics simulation of thymine is performed on the basis of ADC(2) surfaces, to understand the role of dynamic electron correlation on the deactivation pathways. The results show that trapping in S2 is strongly reduced in comparison to previous simulations considering only non-dynamic electron correlation on CASSCF surfaces. The reason for the difference is traced back to the energetic cost for formation of a CO p bond in S2.

Keywords

computational theoretical chemistry; photochemistry; nonadiabatic dynamics; ultrafast processes; surface hopping; nucleobases; thymine

Subject

Chemistry and Materials Science, Physical Chemistry

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.