Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Feature Extraction of Ship Radiated Noise Based on Permutation Entropy of the Intrinsic Mode Function with the Highest Energy

Version 1 : Received: 8 November 2016 / Approved: 9 November 2016 / Online: 9 November 2016 (10:24:35 CET)

A peer-reviewed article of this Preprint also exists.

Li, Y.-X.; Li, Y.-A.; Chen, Z.; Chen, X. Feature Extraction of Ship-Radiated Noise Based on Permutation Entropy of the Intrinsic Mode Function with the Highest Energy. Entropy 2016, 18, 393. Li, Y.-X.; Li, Y.-A.; Chen, Z.; Chen, X. Feature Extraction of Ship-Radiated Noise Based on Permutation Entropy of the Intrinsic Mode Function with the Highest Energy. Entropy 2016, 18, 393.

Abstract

In order to solve the problem of feature extraction of underwater acoustic signals in complex ocean environment, a new method for feature extraction from ship radiated noise is presented based on empirical mode decomposition theory and permutation entropy. It analyzes the separability for permutation entropies of the intrinsic mode functions of three types of ship radiated noise signals, and discusses the permutation entropy of the intrinsic mode function with the highest energy. In this study, ship radiated noise signals measured from three types of ships are decomposed into a set of intrinsic mode functions with empirical mode decomposition method. Then, the permutation entropies of all intrinsic mode functions are calculated with appropriate parameters. The permutation entropies are obviously different in the intrinsic mode functions with the highest energy, thus, the permutation entropy of the intrinsic mode function with the highest energy is regarded as a new characteristic parameter to extract the feature of ship radiated noise. After that, the characteristic parameters, namely, the energy difference between high and low frequency, permutation entropy, and multi-scale permutation entropy, are compared with the permutation entropy of the intrinsic mode function with the highest energy. It is discovered that the four characteristic parameters are at the same level for similar ships, however, there are differences in the parameters for different types of ships. The results demonstrate that the permutation entropy of the intrinsic mode function with the highest energy is better in separability as the characteristic parameter than the other three parameters by comparing their fluctuation ranges and the average values of the four characteristic parameters. Hence, the feature of ship radiated noise can be extracted efficiently with the method.

Keywords

empirical mode decomposition; intrinsic mode function; permutation entropy; multi-scale permutation entropy; feature extraction

Subject

Physical Sciences, Acoustics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.