Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Use of Micropatterned Thin Film Nitinol in Carotid Stents to Augment Embolic Protection

Version 1 : Received: 31 October 2016 / Approved: 1 November 2016 / Online: 1 November 2016 (06:54:40 CET)

A peer-reviewed article of this Preprint also exists.

Shayan, M.; Jankowitz, B.T.; Shridhar, P.; Chun, Y. Use of Micropatterned Thin Film Nitinol in Carotid Stents to Augment Embolic Protection. J. Funct. Biomater. 2016, 7, 34. Shayan, M.; Jankowitz, B.T.; Shridhar, P.; Chun, Y. Use of Micropatterned Thin Film Nitinol in Carotid Stents to Augment Embolic Protection. J. Funct. Biomater. 2016, 7, 34.

Abstract

Stenting is an alternative to endarterectomy for the treatment of carotid artery stenosis. However, stenting is associated with a higher risk of procedural stroke secondary to distal thromboembolism. Hybrid stents with a micromesh layer have been proposed to address this complication. We developed a micropatterned thin film nitinol (M-TFN) covered stent designed to prevent thromboembolism during carotid intervention. This innovation may obviate the need or work synergistically with embolic protection devices. The proposed double layered stent is low-profile, thromboresistant, and covered with a M-TFN that can be fabricated with fenestrations of varying geometries and sizes. The M-TFN was created in multiple geometries, dimensions, and porosities by sputter deposition. The efficiency of various M-TFN to capture embolic particles was evaluated in different atherosclerotic carotid stenotic conditions through in vitro tests. The covered stent prevented emboli dislodgement in the range of 70-96% during 30min duration tests. In vitro vascular cell growth study results showed that endothelial cell elongation, alignment and growth behaviour silhouettes significantly enhance specifically on the diamond-shape M-TFN with the dimensions of 145µm×20µm and a porosity of 32%. Future studies will require in-vivo testing. Our results demonstrate that M-TFN has a promising potential for carotid artery stenting.

Keywords

thin film nitinol; carotid artery; micro mesh stent; micropatterning

Subject

Chemistry and Materials Science, Materials Science and Technology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.