Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Hydrological Modelling Using Rainfall Simulator over Experimental Hillslope Plot

Version 1 : Received: 20 October 2016 / Approved: 21 October 2016 / Online: 21 October 2016 (09:30:21 CEST)

A peer-reviewed article of this Preprint also exists.

Chouksey, A.; Lambey, V.; Nikam, B.R.; Aggarwal, S.P.; Dutta, S. Hydrological Modelling Using a Rainfall Simulator over an Experimental Hillslope Plot. Hydrology 2017, 4, 17. Chouksey, A.; Lambey, V.; Nikam, B.R.; Aggarwal, S.P.; Dutta, S. Hydrological Modelling Using a Rainfall Simulator over an Experimental Hillslope Plot. Hydrology 2017, 4, 17.


Hydrological processes are complex to compute on hilly areas when compared to the plain areas. Most of the hydrological model do not take into account the critical rainfall-runoff generation processes such as subsurface storm flow, saturation excess flow, overland flow, return flow and pipe storage. The simulations of the above processes in the soil matrix requires detailed hillslope hydrological modelling. In present study, a hillslope experimental plot is designed to study the runoff generation processes on the plot scale. The setup is designed keeping in view the natural hillslope conditions prevailing in the north western Himalayas, India where high intensity storm event occurs frequently. Using the experimental data and the developed conceptual model, the overland flow and the subsurface flow through macropore dominated area has been estimated/analyzed on the pixel basis. Over the experimental hillslope plot, a rainfall simulator was installed to generate the rainfall intensity in the range of 15 to 150 mm/hr which represented the dominating rainfall intensity range in the region. Soil moisture sensors were also installed at 100 mm and 300 mm depth at different locations of the plot to observe soil moisture variations. It was found that once the soil is saturated, it remains in the field capacity for next 24-36 hours. Such antecedent moisture conditions are most favorable for the generation of rapid stormflow from hillslopes. Dye infiltration test was also performed on the undisturbed soil column to observe the macropore fraction variability over the vegetated hillslopes. The surface runoff predicted using the developed hillslope hydrological model compared well with the observed surface runoff under high intensity rainfall conditions.


hydrological processes; hillslope hydrological modeling; rainfall simulators; subsurface flow processes


Environmental and Earth Sciences, Environmental Science

Comments (1)

Importance: How significant is the paper to the field?
Outstanding/highlight paper
Significant contribution
Incremental contribution
No contribution
Soundness of evidence/arguments presented:
Conclusions well supported
Most conclusions supported (minor revision needed)
Incomplete evidence (major revision needed)
Hypothesis, unsupported conclusions, or proof-of-principle
Comment 1
Received: 23 October 2016
Commenter: Ankit Choudhary
The commenter has declared there is no conflict of interests.
Comment: Significant contribution towards experimental hydrology
+ Respond to this comment

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 1
Metrics 0

Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.