Preprint
Article

This version is not peer-reviewed.

The Solvency II Standard Formula, Linear Geometry, and Diversification

A peer-reviewed article of this preprint also exists.

Submitted:

10 October 2016

Posted:

10 October 2016

Read the latest preprint version here

Abstract
We introduce the notions of monotony, subadditivity, and homogeneity for functions defined on a convex cone, call functions with these properties diversification functions and obtain the respective properties for the risk aggregation given by such a function. Examples of diversification functions are given by seminorms, which are monotone on the convex cone of non-negative vectors. Any Lp norm has this property, and any scalar product given by a non-negative positive semidefinite matrix as well. In particular, the Standard Formula is a diversification function, hence a risk measure that preserves homogeneity, subadditivity, and convexity.
Keywords: 
;  ;  ;  ;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated