Preprint
Article

This version is not peer-reviewed.

Human Activity Recognition Based on Quantization on Feature’s Classification Capability

Submitted:

29 September 2016

Posted:

29 September 2016

You are already at the latest version

Abstract
Motion related human activity recognition using wearable sensors can potentially enable various useful daily applications. So far, most studies view it as a stand-alone mathematical classification problem without considering the physical nature of human motions. Consequently, they suffer from data dependencies and encounter the dimension disaster problem and the over-fitting issue, and their models are never human-readable. In this study, we start from a deep analysis on natural physical properties of human motions, and then propose a useful feature selection method to quantify each feature's classification contribution capability. On one hand, the "dimension disaster" problem can be avoid to some extent, due to the affined dimension of key features; On the other hand, over-fitting issue can be depressed since the knowledge implied in human motions are nearly invariant, which compensates the possible data inadequacy. The experiment results indicate that the proposed method performs superior to those adopted in related works, such as decision tree, k-NN, SVM, neural networks.
Keywords: 
;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated