Preprint
Article

New Scientific Contribution on the 2-D Subdomain Technique in Cartesian Coordinates: Taking into Account of Iron Parts

This version is not peer-reviewed.

Submitted:

15 January 2017

Posted:

16 January 2017

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
The most significant assumptions in the subdomain technique (i.e., based on the formal resolution of Maxwell's equations applied in subdomain) is defined by: “The iron parts (i.e., the teeth and the back-iron) are considered to be infinitely permeable so that the saturation effect is neglected”. In this paper, the author presents a new scientific contribution on improving of this method in two-dimensional (2-D) and in Cartesian coordinates by focusing on the consideration of iron. The subdomains connection is carried out in the two directions (i.e., x- and y-edges). For example, the improvement was performed by solving magnetostatic Maxwell's equations for an air- or iron-cored coil supplied by a direct current. To evaluate the efficacy of the proposed technique, the magnetic flux density distributions have been compared with those obtained by the 2-D finite-element analysis (FEA). The semi-analytical results are in quite satisfying agreement with those obtained by the 2-D FEA, considering both amplitude and waveform.
Keywords: 
air- or iron-cored coil; Cartesian coordinates; Fourier analysis; two-dimensional; saturation effect; subdomain technique
Subject: 
Computer Science and Mathematics  -   Applied Mathematics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Altmetrics

Downloads

2300

Views

2180

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated