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Abstract: The most significant assumptions in the subdomain technique (i.e., based on the formal
resolution of Maxwell’s equations applied in subdomain) is defined by: “The iron parts (i.e., the teeth
and the back-iron) are considered to be infinitely permeable, i.e., mjon, ¥ -+, so that the saturation effect
is neglected”. In this paper, the author presents a new scientific contribution on improving of this
method in two-dimensional (2-D) and in Cartesian coordinates by focusing on the consideration
of iron. The subdomains connection is carried out in the two directions (i.e., x- and y-edges).
For example, the improvement was performed by solving magnetostatic Maxwell’s equations for
an air- or iron-cored coil supplied by a direct current. To evaluate the efficacy of the proposed
technique, the magnetic flux density distributions have been compared with those obtained by the
2-D finite-element analysis (FEA). The semi-analytical results are in quite satisfying agreement with
those obtained by the 2-D FEA, considering both amplitude and waveform.
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1. Introduction

1.1. Context of this Paper

Generally, the modeling of the electromagnetic field distribution is a key step in the design
process for developing electromechanical systems. Although there are many papers in this
scientific domain, the modeling approach is still a challenging and attractive research topic. Some
comprehensive reviews on the models of electrical machines for magnetic field calculations can be
found in [1-6], and their references, with their (dis)advantages. The modeling techniques can thus be
classified in various categories:

Graphical method of Lehmann [7];

Numerical methods (i.e., the finite-element, finite-difference or boundary-element analysis) [8—
12];

Electrical/ Thermal/Magnetic equivalent circuit (EEC/TEC/MEC) [13-16];

Schwarz-Christoffel (SC) mapping method [17-19];

Maxwell-Fourier methods [10,18-22]: i) Multi-layers models, and ii) Subdomain technique.

The graphical method of Lehmann, which determines the magnetic field distribution in all parts
of an electrical machine even when the machine is saturated, has been forgotten to the detriment
of other methods, mainly numerical. In the past few decades, numerical modeling techniques
have been applied to electromechanical systems analysis. These methods are precise and take into
account the exact/simplified geometry, the nonlinear B(H) curve, the rotor motion,... The most
accurate models are the three-dimensional numerical methods. Nevertheless, these approaches are
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time-consuming and not suitable for the optimization problems. In [23,24], it is possible to optimize
electromagnetic systems from numerical methods. Nowadays, in order to reduce the computation
time, hybrid numerical methods can be developed [25-27]. The actual design works are mainly based
on (semi-)analytical models! (i.e., EEC/TEC/MEC, SC mapping and Maxwell-Fourier methods).
Indeed, under certain assumptions, these models have the advantage to be explicit/accurate/fast.
Moreover, they allow us to take into account rigorously the slotting effect in the electrical machines
as well as various electromagnetic domains with(out) the current penetration effect in the conductive
materials. Except in the numerical methods and nonlinear MEC, the saturation effect remains one
of the scientific challenges in the modeling. Tiegna et al. (2013) [5] wrote: “No examples of analytical
models based on the formal solution of Maxwell’s equations which take into account local magnetic saturation
are available to date”. Thus, in this paper, the main scientific focus will be on the consideration of iron
in Maxwell-Fourier methods with the local/global saturation.

1.2. State-of-the-Art: Saturation in Maxwell-Fourier Methods

Very few works have included the iron in Maxwell-Fourier methods with the local/global
saturation due to variation of the material properties (e.g., in case of stator and/or rotor slotting,
buried magnets,...). The most significant assumptions is defined by: “The iron parts (i.e., the teeth
and the back-iron) are considered to the infinitely permeable, i.e., mj,on, ¥ +3¢, so that the saturation effect is
neglected”. It results in an overestimation of the magnetic flux and, consequently, the electromagnetic
performances (e.g., the back EMF, the electromagnetic torque, the efficiency). Thus, consideration of
iron in the modeling is a mandatory task in order to have a reliable estimation of the electromechanical
systems behavior.

Existing models in the electrical machines, based on Maxwell’s electromagnetic field equations,
taking into account the iron parts with(out) the nonlinear B(H) curve are:

Multi-layers models (only the global saturation):

— Carter’s coefficient: The slotted machine is transformed into a slotless equivalent structure
by applying the usual Carter’s coefficient [28]. Generally, the armature slotting is taken
into account through the SC mapping method. The analytical magnetic field distribution is
determined in five or six homogeneous layers (i.e., exterior, slotless stator, winding/air-gap,
magnets, and rotor) [29-31]. In [29], the magnetic permeabilities in stator/rotor iron cores
have a constant value corresponding to linear zone of the B(H) curve. An iterative technique
to include the nonlinear properties of core material has been developed in [30] (for a no-load
operation) and [31] (for a load operation whose the source term in the slot caused by the
armature currents is represented by a winding current region over the stator slot-isthmus). In
this type of modeling, the local distribution of flux densities in the teeth and slots is neglected.
However, by calculating the flux entering the stator surface from the air-gap magnetic field
and thus assuming uniform distribution of flux, the flux density in middle of the stator teeth
can be obtained.

— Saturation coefficient: It represents the ratio between the total magnetomotive force (MMF)
required for the entire magnetic circuit and the air-gap MMF [32]. The main magnetic
saturation is included in the saturation factor, in an iterative way, by using the nonlinear
B(H) curve. The saturation effect is accounted for by modifying the air-gap length [32-34]
or by changing the physical properties of magnets (in this case, the saturated load operation is
calculated by considering an equivalent no-load operation with a fictitious magnet having a

1 This type of model consists of N interrelated analytical equations which must be solved numerically (a.k.a. semi-numerical

models). For example, in Maxwell-Fourier methods, the unknown coefficients of the series are computed by solving a
(non)linear matrix system.
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remanent flux density that creates the same MMF as the one created by both real magnet and
stator MMF) [35]. The analytical magnetic field distribution is mainly determined in one or
two regions (viz., air-gap or air-gap/magnets) of slotless machines by applying the Carter’s
coefficient [32]. The slotting effect can be neglected [32,35] or taken into account through the
SC mapping method [33,34]. The magnetic fluxes in the stator/rotor iron cores are obtained
from the air-gap magnetic field [32,33,35] or/and with a simple MEC [34]. This technique
has been applied to surface-mounted/-inset magnets machines [32-35], surface-inset magnet
machines [33], and others electrical machines.

— Concept wave impedance: They are based on a direct solution of Maxwell’s field equations in
homogeneous multi-layers of magnetic material properties, viz., the magnetic permeability
and the electrical conductivity. This approach, developed by Mishkin (1953) [36], was first
applied to squirrel-cage induction machine in Cartesian coordinates with three-layers (i.e.,
stator slotting, air-gap, and rotor slotting). It was used and enhanced by many authors, viz.,

simplification of the electromagnetic theory [37];

extended with an infinite number of layers [38];

converted into equivalent circuits and terminal impedance [39];

included the curvature effect with the magnetizing current [40];

incorporated spatial harmonics in the multi-layers theory by considering isotropic and
anisotropic (e.g., laminated, composite, and toothed) regions [41,42];

introduced the nonlinear B(H) curve in homogenous layers by an iterative procedure [43,
44];

taking account of the slot-opening effect [45], i.e., the multi-layers model is combined
with the subdomain technique for slotted structures by assuming infinitely permeable
tooth-tips;

included the current penetration effect in conductive layers [43,46]. The analytical solution
for the electromagnetic field in conductive layers is then defined by Bessel functions.

— Convolution theorem: The electrical machine is divided into an infinite number of
(in)homogeneous layers. The permeability in the stator and/or rotor slotting is represented
by a complex Fourier series along the direction of permeability variation The permeability
variation in the direction of the periodicity is directly included into the solution of the
magnetic field equation. The resulting formulation, based on a direct solution of Maxwell’s
field equations using the Cauchy’s product theorem (i.e., the discrete convolution of two
infinite series), is completely defined in terms of complex Fourier series [47]. Recently, [48]
extended this modeling taking into account the nonlinear B(H) curve in each soft-magnetic
section by an iterative procedure. For the moment, this technique has been applied to a
switched reluctance machine [48] and a synchronous reluctance machine [49].

Eigenvalues model (the global saturation): The electromagnetic field can be solved directly by
applying the method of Truncation Region Eigenfunction Expansions (TREE) [50]. The iron
cores have finite magnetic permeability and finite height/width. The studied domains can be
(non)conductive. The boundary value problem is formulated in terms of the magnetic vector
potential, which is expanded in a series of appropriate eigenfunctions. The unknown coefficients
of the series are computed by solving a matrix system (by using a standard method such as the LU
decomposition), which is formed by applying the usual interface conditions. The corresponding
eigenvalues are the real roots of a function with the geometrical and the magnetic permeability of
the core as parameters. Nevertheless, an iterative numerical method (e.g., the bisection [50] and
Newton-Raphson [51] method) is always adopted to compute the discrete eigenvalues in both
the odd and even parity solutions. For the moment, this technique has been widely applied to
the non-destructive testing of conductive materials (e.g., for the I-cored [50] and E-cored [52,53]
probes, for a long coil with a slot in a conductive plate [51],...).
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Hybrid models (the local/global saturation): The analytical solution can be combined with numerical
methods [54-57] or (non)linear MEC [58-67]. Usually, the analytical solution is established in
uniform regions of very low permeability (e.g., air-gap, and magnets) and other methods are
sought in regions where magnetic saturation cannot be neglected (i.e., the stator and/or rotor
iron cores).

1.3. Objectives of this Paper

To the best author’s knowledge, in the literature, there is no (semi-)analytical model based on the
subdomain technique that taking into account of iron parts with(out) the nonlinear B(H) curve. Thus,
the work in this paper takes part in the development and improvement of the subdomain technique
on this scientific topic.

The disadvantage of multi-layers models, except those with the convolution theorem, is that it
does not give a very accurate description of the local magnetic field distribution in the iron parts with
a global saturation. In the harmonic modeling technique using the convolution theorem, convergence
problems due to the truncated Fourier series around the soft-magnetic material discontinuities may
exist [47-49]. Except in multi-layers models using the conception wave impedance and in the TREE
method, the electrical conductivity is assumed to be zero. It is interesting to note that the TREE
method is not similar to the novel method proposed in this paper. The difference is that TREE
method imposes a term-by-term field continuity on one direction and a weak continuity on the
other direction, while the 2-D subdomain technique imposes a weak continuity on both directions.
Furthermore, the latter method does not need to find any special eigenvalues by using iterative
numerical schemes. Contrary to the TREE method, the new approach proposed in this paper allows to
decompose the analytical solution in Fourier series into two solutions according to the two directions
and to respect the boundary conditions by applying the principle of superposition on the magnetic
guantities. Moreover, it also allows to evaluate the local distribution of flux densities in the iron
parts with a global saturation, does not have numerical convergence problems, and would easily
introduce the current penetration effect in the conductive materials. Section 2 presents this new
scientific contribution based on the subdomain technique. For example, it was performed by solving
2-D magnetostatic Maxwell’s equations in Cartesian coordinates (x,y) for an air- or iron-cored coil
supplied by a direct current. The subdomains connection is carried out in the two directions (i.e., x-
and y-edges). The iron magnetic permeability is constant corresponding to linear zone of the initial
magnetization curve. Nevertheless, as in [48], it should be mentioned that the material properties
could be updated iteratively to take the nonlinear B(H) curve of the material into account. However,
this is beyond the scope of the paper. In Section 3, in order to evaluate the efficacy of the proposed
technique, the magnetic flux density distributions have been compared with those obtained by the
2-D FEA [8]. The comparisons are very satisfying in amplitudes and waveforms.

This major scientific contribution could be applied to rotating and/or linear electrical machines
with(out) magnets supplied by a direct or alternate current (with any waveforms) whose the analysis
would be based on a 2-D semi-analytical model in Cartesian coordinates (e.g., plane linear machines,
axial-flux machines,...).

2. A 2-D Subdomain Technique of Magnetic Field

2.1. Problem Description and Assumptions

The application example, namely an air- or iron-cored coil, with the geometrical and physical
parameters is illustrated in Figure 1. The system consists of a coil with N; turns of the copper wire
which is supply by a direct current I. The direction of current in the conductor is defined by  for
the forward conductor and  for return conductor. The material in the middle of the coil can be air
or iron. The system is surrounded by the vacuum via an infinite box.
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Figure 1. Air- or iron-cored coil.

The 2-D magnetic field distribution in the air- or iron-cored coil has been studied in Cartesian
coordinates (x,y) by solving magnetostatic Maxwell’s equations from subdomain technique. In this
analysis, the magnetic field solution is based on the following simplifying assumptions:

The end-effects are neglected (i.e., that the magnetic variables are independent of z);
The electrical conductivities of materials are assumed to be null (i.e., the eddy-currents induced

in the copper/iron are neglected);
The magnetic materials are considered as isotropic (i.e., the permeability can be assumed the same

in the two directions);
The effect of global saturation is taken into account with a constant magnetic permeability

corresponding to linear zone of the B(H) curve (i.e., the initial magnetization curve).

2.2. Problem Discretization in Subdomains

As shown in Figure 2, the problem domain is divided into 7 subdomains with m = CSt. The
vacuum around to the air- or iron-cored coil is defined by 4 regions, i.e.,

Region 1 f8x Ny 2 [y, y2]g with my = my;

Region 2 f8x Ny 2 [ys, y4]g with my =my;

Region 3 fx 2 [xy, x2] Ny 2 [y2, y3]g with mg = my;

Region 4 fx 2 [xs5, Xg] Y 2 [y2, Yy3]lg with my = my,.
The air or iron in the middle of the coil is defined by the Region 5 fx 2 [x2, 3]y 2 [y2, Y3]g with
ms = my for the air or ms = mj,on for the iron. The coil (i.e., forward and return conductors) is defined
by 2 regions, i.e.,

Region 6 Tx 2 [X2, Xx3] ™Yy 2 [y2, y3]g with mg = mg;

Region 7 fx 2 [Xx4, X5] Ny 2 [y2, y3]g with m7 = m.

2.3. Governing Partial Differential Equations in Cartesian Coordinates
According to (A.4) [see Appendix A], the 2-D magnetic vector potential distribution in Cartesian

coordinates (x, y) is governed by the Laplace’s equation in Regions j with j = f1, ..., 5g, i.e.,

_ ﬂZAzj + ﬂzAzj
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Figure 2. Subdomains in the air- or iron-cored coil.
and the Poisson’s equation in Regions k with k = 6, 7g, i.e.,
12 A ﬂzAzk _
DAx = ﬂXz ﬂyg = mg i, (23.)
where J, represents the current density (due to supply currents) which is defined by
Nt |
Tk = C —5— (2b)
C

in which S; is the conductor surface, and Cy is the coefficient for the direction of current in the
conductor (e.g., with Cg = 1 for the forward conductor and C; = 1 for return conductor).

According to the method of separation of variables, it is interesting to note that A, can be
decomposed into two potentials according to the two directions [see Appendix A}, i.e., AX for the
x-edges (A.5b) and AJ forthe y-edges (A.5¢c). The periodicity of AY and AJ are respectively defined
byb , and 1 , withh andn the spatial harmonic orders.

2.4. Boundary Conditions

2.4.1. Reminder on the Boundary Conditions at the Interface of Two Surfaces

1
In electromagnetic, as shown in Figure 3, the magnetic field H obeys Ampére’s continuity
condition,

Om
I
5
I
&
[l
Nm

(32)

Where n is the unit vector normal to the boundary between two surfaces, F| k the parallel component

of FI on one side of the interface, and K the current density at the surface of the interface.
At this same surface, the magnetic flux continuity condition also applies

Om
(o9 |
N
Qo
(os |
)
o
Il
o
o
=
Dim
QO
Dim
o
Il
o

(3b)

| 1
where B - is the perpendicular component of B on one side of the interface. The Dirichlet condition
on one surface is defined by ' '

A,=0 or A,=0. (3¢c)
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Figure 3. Boundary conditions at the interface of two surfaces.

2.4.2. Application to the Air- or Iron-cored Coil

On the outer boundaries for (x; ™ xg, 8y) and (8%, y1 7 y4) [see Figure 2], the component of the
magnetic vector potential satisfies the Dirichlet boundary condition, i.e., (3c). By applying (3) and
using (A.2) [see Appendix A], the respective boundaries at the interface between the various regions
are illustrated in Figure 4.

2.5. General Solutions

2.5.1. Region 1

The general solution of A;1, By; and By, are determined by the particular case of the case-study
no 1" A; imposed on all edges of a region" in the Appendix B. The boundary conditions on the y-edges of
the region [see Figure 4a] are met by posing ¢} = 0 in (B.4). Therefore, the magnetic vector potential
A,1, which is a solution of (1) satisfying the boundary conditions of Figure 4a, is defined by

_ ¥ d1y shibly (v vl

AZl_h1=1 blny  ch bly ty, sin[bly (x x1)l, )
the components of 51: Bx1;By1;0 by
_ ¥« chibly (v oyl
BXl_hl:ldlhl ch by &, sin[bly; (X xp)l, (5)
_ ¥ . shibly (v yu)l
By1 = O T by €, cos[bly (x  xp)l, (6)

where hl is the spatial harmonic orders in Region 1, d1}, the integration constant, bly; = hl p tg
andty =X X1 &t =Yy, Vi

The coefficient d1}; is determined using a Fourier series expansion of F; (x) [see Figure 4a] over
the interval x = [xq, Xg] = [X1, X1 + tq]:

2 X7Htyg
o|1;1:a F1(x) sin[bly (x  x1)] dx. ()

X1

The expression of d1%, is developed in the Appendix C.
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Figure 4. Boundary conditions in subdomains: (a) Region 1, (b) Region 2, (c) Region 3, (d) Region 4,
(e) Region 5, (f) Region 6 and (g) Region 7.

2.5.2. Region 2

The same method than Region 1 is used to find the solution in Region 2. By posing dX = 0 in
(B.4) [see Appendix B], the magnetic vector potential A;,, which is a solution of (1) satisfying the
boundary conditions of Figure 4b, is defined by

¥ 2%, sh[b2y, (ya V)]
A, = h2 hz 174 sin[b2, (x  x¢)], 8
2 . b2p ch b2y T [b2n, ( D] (8)
x
the components of B, = By»;By»;0 by
¥ ch[b2y, (s Y)]
BX2 = CZEZ sin[b2h2 (X X]_)], (9)

h2=1 ch b2y, tp
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Buy = ¥ oox. ShbZe (v ¥)]
y ho=1 h2 ch b2p, typ

cos[b2y, (x  x1)], (10)

where h2 is the spatial harmonic orders in Region 2, c2}%, the integration constant, b2,, = h2 p tx
andtix =X X1 &t =ys Va3

The coefficient c2}, is determined using a Fourier series expansion of G; (x) [see Figure 4b] over
the interval x = [x1, Xg] = [X1, X1 + teol:

5 Xzt
2 = £ Gy (%) sin[b2, (X xq)] dx. (11)
X

X1
The expression of c2}, is developed in the Appendix C.
2.5.3. Region 3

The general solution of A;3, Bys and Bys are determined by the case-study no 1 "'A; imposed on
all edges of a region™ in the Appendix B. The boundary conditions on the x-edges of the region [see
Figure 4c] are met by posing ej, = 0 in (B.1)-(B.3). Therefore, the magnetic vector potential A3, which
is a solution of (1) satisfying the boundary conditions of Figure 4c, is defined by

Ay = A+ Al (12a)

¥ (c3x h[b d3%, shib )
hs Sh[b3ns (va  y)] | 9355 shib3ns (v y2)]
h3=1 b33 sh b3h; ty3 b33 sh b33 ty3

£30s sh[13hs (X x1)]

Az = sin[b3ps (x  x1)],  (12b)

Ay = sin[13 , 12¢
B a2 BB sh(I3ns ty) (133 (v Y2)] (12c)
]
the x-component of B 3 by
Bas = B+ Bra (132
BX. — v ¢ cgx, Nb3ns (y3 W | 4o ChIb3ns (v yz)]) i o sl
e h3=1 " sh b3y tys " sh b3y ty h3 b
¥
y — y sh[13h3 (X X1)]
P n3=1f3”3 sh (133 ty3) cos[I3ns (v VY2l (13¢)
| |
the y-component of B 3 by
Bys = BJ; + B}, (14)
N sh[b3s (va ¥)] shib3 (v ¥2)]
BX e X 3 3 +d3X h3 2 b3 , 14b
v h3=1 s s b3ps ty3 " sh b3 ty3 cos[b3p; (X x1)], (14b)
¥ h[13n3 (X X1)]
Bl = 13y © o 122 sin[13 , 14¢
BT ™ T sh (130 ) (130 (v v2)] (14¢)

where h3 & n3 are the spatial harmonic orders in Region 3; c3},;, d3}; and f3}; the integration
constants; b3p3 =h3 p tewithtiz =%, Xxg;and 13,3 =n3 p tawithtyz =y3 Y,.

The coefficients c3}; and d3); are respectively determined using Fourier series expansion of
Azljgx,\y:yz and Azgjgx,\y:y3 [see Figure 4c] over the interval x =[x, Xo] = [X1, X1 + ty3]:

2 X]Z'_tXB
c3§3=t— b3h3 Azjy=y, sin[b3pz (x xq)] dx, (15a)

X3
X1

d0i:10.20944/preprints201609.0106.v2
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2 X7t i3
a3 = = b3 Anlyey, SiN[b3ps (x  x1)] dx. (15b)

X3
X1

The coefficient f?,’r’\3 is determined using a Fourier series expansion of AZijzxz’\By [see Figure 4c] over
the intervaly = [y,, y3] = Y2, Yo+ ty3 :
5 Y27 ty3
f3ﬁ3 = @ |3n3 AZij:xz Sin [|3n3 (y YZ)] dy (16)
Y2

The expression of c3},, d3); and fSﬁ3 are developed in the Appendix C.

2.5.4. Region 4

The same method than Region 3 is used to find the solution in Region 4. By posing fJ = 0 in
(B.1)-(B.3) [see Appendix B], the magnetic vector potential A,4, which is a solution of (1) satisfying
the boundary conditions of Figure 4d, is defined by

Ay =AY+ A

4’ (173)

¥ ( X X )
X — c4hy shbdn, (y3 y)]+d4h4 shibdns (v Yy2)l

sin[b4ns (x xs)], (17b)

“ u=1 Dhna sh bdn ty bas  sh bap 1
¥ edl, shil4ng (x5 X)]
Ao = » na 276 sin[14 , e
# =y Mna o sh(l4ng t) [W4ns (v y2)] (17c)
]
the x-component of B 4 by
C
¥
ch[b4 ch[b4 )
BY, = X, s[h r;)44 s I, X, [h r;x4 (v y2)l sinlbds (x xo)l,  (18b)
h4=1 ha Ty s ha Tya
¥
sh[l4ns (X6 X)]
Bl = edy E cos[14 , 18¢
X na=1 n4 sh(l4py tyy) [M4na (v ¥2)] (18¢)
]
the y-component of B, by
Bys = Bl + B (19a)
C
¥ sh[b4 shiba
B§/(4= c4n, s[h f;14 (ys ¥l +day, [h rtl)44 (y y2)l cos[bdns (x xs)] (19b)
ha=1 ha Tya s ha ya
¥ h[l4ns (X5 X)]
By = 4y c n4 6 inl14 .
ve n4:1e Nt sh(14ps ty) sin[l4ns (v y2)], (19¢)

where h4 & n4 are the spatial harmonic orders in Region 4; c4y,, d4), and e4ﬁ4 the integration
constants; b4n, = h4 p tywithty =xs Xxs;and 144 =n4 p tywithty =ys v,

The coefficients c4), and d4), are respectively determined using Fourier series expansion of
AzljBX,\y:y2 and AZZjBX,\y:y3 [see Figure 4d] over the interval x = [xs5, Xg] = [X5, X5 + ty4]:

2 X7ty
c4§4=t— bdns Aztiy=y, sin[bdns (x xs)] dx, (20a)

X4
Xs
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Xzt ta
dap, = tix4 bdny Azjy=y, Sin[bdny (x Xxs)] dx. (20b)
X5
The coefficient e4ﬁ4 is determined using a Fourier series expansion of AZ7jX:X5,\8y [see Figure 4d] over
the interval y = [y, ys] = vz, Y2+ tya :

5 Yo7ty
e4ﬁ4=—4 Vs Agtix=y, SIN[14na (v y2)] dy. (21)
Y2

y

The expression of c4},, d4), and e4)

4 are developed in the Appendix C.

2.5.5. Region 5

According to case-study no 1 " A, imposed on all edges of a region" in the Appendix B, the magnetic
vector potential A5, which is a solution of (1) satisfying the boundary conditions of Figure 4e, is
defined by

A = Al + A, (22a)
v Cox sh[b5ps (ys  y)] | 55 sh[bSws (v y)])
Afs = "8 e e = 22 sin[bSps (x xg)l  (22b)
h5=1 b5h5 sh b5h5 ty5 b5h5 sh b5h5 ty5
C
y ¥ e5ﬁ5 sh[l505 (X4 X)] f5z5 sh[#5n5 (X x3)] ;
Ay = + sin[505 (v y2)l,  (220)

n5=1 1505 Sh(IE‘nS tx5) 1505 Sh(|5n5 tx5)

]
the x-component of B 5 by

Bxs = BJs + B, (23a)
D
¥ ch[b5ws (ys  ¥)] ch[b5ns (Y y2)]
BX. = c5% 5 + (5% h 21 sin[b5hs (X X3)],  (23b)
x5 h5=1 h5 Sh b5h5 tyS h5 Sh b5h5 tyS [ h5 ( )]
¥
y _ y ShlSns (x4 )] oy Sh[BSns (X x3)]
BT e P TS5 ) U sh(Isg te) ot O val (%)

]
the y-component of B 5 by

Bys = BJs + B}, (24a)

L C >
BX — ogx. ShSws (3 W] | ox  Sh[DSws (v y2)l
y5 — h5 h5

hs5=1 sh b5h5 ty5 sh b5h5 ty5

Ch[|5n5 (X4 X)] Ch[|5n5 (X XS)]
sh (1505 tys) sh (I5p5 tys)

cos[b5y5 (x x3)], (24b)

y ¥ y
By5 = €95
n5=1

+ 505 sin[I5m5 (v y2)l, (24c)
where h5 & n5 are the spatial harmonic orders in Region 5; ¢5;;, d5;;, e5¥,5 and fSﬁ5 the integration
constants; b5, =h5 p tswithtys = x4  Xz;and 15,5 =n5 p tswithtys =y3 Yy,

The coefficients c5¢; and d5); are respectively determined using Fourier series expansion of
AleSx"yzyz and AzszX,\y:y3 [see Figure 4e] over the interval x = [x3, X5] = [X3, X3 + tys]:

5 X:zf'txg,
05§5=t— b5ns  Aztjy=y, Sin[bShs (x  x3)] dx, (25a)

X5
X3
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2 Xgttxs
d5ﬁ5=t— b5p5 Azzjy=y3 sin[b5ps (X x3)] dx. (25b)
X5

X3

The coefficient eSﬁ5 and fsﬁ5 are respectively determined using a Fourier series expansion of
Azng:XBASy and AZ7jx=x4"8y [see Figure 4e] over the interval y = [y,, y3] = Y2, Yo + ty5 :

5 Yo7 tys
65ﬁ5=Q 1505 Assly=y, SiN[I5ns (v Y2)] dy, (262)
Y2
) YZZ+ty5
f5ﬁ5:E 1505 Az?szx4 sin[1505 (y y2)] dy. (26b)
y2

The expression of c5}, d5), eSﬁ5 and f5¥5 are developed in the Appendix C.

2.5.6. Region 6

According to case-study no 2 "By and A; are respectively imposed on x- and y-edges of a region" in
the Appendix B, the magnetic vector potential A,g, which is a solution of (2) satisfying the boundary
conditions of Figure 4f, is defined by

AzG = A;(e + A;/s + AZPGv (27a)
(y3 y) c6g+(y y2) d6;

Al = ¥ c6X h dex
26 + he  Sh[bGns (ys Y)I 4 U6k shibbus (v Y2l ocrpg - (x xo)] °
he=1 0Bne  sh(bb tyg)  DBhe  sh(bbne tys) [b6he ( 2)]

(27b)

C y D)
e6ps ch[16ns (X x2)] f6hs ch[M6ns (x3  X)]

A=
26 160  sh(16ns txe) 1606  sh(16ps tys)

sin[I16n (Y Y2)]. (27¢)

n6=1

Considering (27b) and (27c) as well as the form of the current density distribution, i.e., (2b), a
particular solution A;pg can be found. The following quadratic form can be proposed as a particular
solution:

1
Azpe = 5 Me Jze y2. (27d)

[
The x-component of B g is defined by

Bxs = Bjjg + Blg + Byps, (28a)
c6y + d6y
Bl = ¥ x_ chibbs (s Y] 4 gax  Ch[b6hs (v ¥2)] ., (28b)
+h6=l Cohs h(bbre o) + d6}, h(b6ns T5) cos[bbhg (X X2)]
¥
ch[16ns (x  X2)] y ch[l6hs (x3 X)]
BY. = e6” f6 cos[16 ., (28¢c
T O (6 b)) ® sh(I6 o) Wons O ¥2)l. - (280
1A
Bxps = g = Mo s V. (28d)
y
]
and the y-component of B g by
Bys = Bjjg + BJg + Byps, (29a)

v € >
BX — 67, shbbhe (ys ¥, 4ex SN[bBhe (v ¥2)]

sin [b6 X  X2)], 29b
P et sh bbps tys "6 sh bbyg tys [b6hs (x x2)l,  (29D)
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¥
y _ y Sh{l6ns (x x2)] _ vy Sh[l6ns (x3 X)]
BT oy O (6 ) O sh(ley tg)  riroe O vl (299
Byps = TAzs _ (29d)

x ’
where h6 & n6 are the spatial harmonic orders in Region 6; c6%, d6}, c6%,, d6%,, 6} and f6) the
integration constants; b6, = h6 p tys With tyg = X3 Xz;and 16p = N6 p tyeWithtyg =y3 Yo.

The coefficients c6;j & c6); and d6j & d6}; are respectively determined using Fourier series

expansion of Azljgx,\y:y2 and A22j8)(/\y:y3 [see Figure 4f] over the interval x = [xp, x3] =
[x2, X2 + tyg]:
X7+ b 1 h i
CGE)( = + AZ].jy:y2 AZPGjy:yz dX, (303-)
s % tye
2 X7t h i
CBhe = te bbhe  Aztly=y, Azpely=y, COS[bbhg (X x2)] dx, (30b)
X2
1 X7+t 1 h i
d6())( = + AZij:y3 AZP6jy:y3 Xm (SOC)
L% ' e
5 X7+ te h i
déjs = te bbhe  Az2jy—y, Azpely=y, COS[bbhs (x x2)] dx. (30d)
X
X2

The coefficient eGﬁ6 and fﬁﬁ6 are respectively determined using a Fourier series expansion of mg mg

Bys X=x578y and mg m3 By3 X=x,8y [see Figure 4f] over the interval y = [y,, y3] = Y2, y2 + typ -

Y27 tye

2 Mg .
eGﬁeza e Bys vox, ByP6 oy, SIN[16rs (v y2)] dy, (31a)
Y2
Y27 tye
foY = 2 M g B in[16 d 31b
ne—% ms Y3 x=x, YP6 x=x, sin[16ns (Y Y2)] dy. (31b)
Y2

The expression of c67, d6y, c6), d6ys, eGﬁ6 and fBﬁ6 are developed in the Appendix C.

2.5.7. Region 7

According to case-study no 2 "By and A; are respectively imposed on x- and y-edges of a region" in
the Appendix B, the magnetic vector potential A,7, which is a solution of (2) satisfying the boundary
conditions of Figure 4qg, is defined by

Ay = A5+ A, + Agpr, (32a)
(ys y) c7ig+(y vy2) d7j

Ay = ¥ % sh[bTy (ys Y)] 4 975 sh[b7wr (v ¥2)] , (32b)
+ hy  SNO7h7 O3 Y 4 Zlhy  SNIBTh7 Y Y2)l 7
oy BT sh(bTwr t7) | Blw sh(bTwm g7y O [b7h7 (X Xa)]

C
¥ el ch[017n7 (X x)] 75 ch[07w (x5 X)]

27 n7=1 |7n7 sh (|7n7 tx7) |7n7 sh (|7n7 tX7)

sin[17n7 (y y2)]. (32¢)
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Considering (32b) and (32c) as well as the form of the current density distribution, i.e., (2b), a
particular solution A,p7 can be found. The following quadratic form can be proposed as a particular
solution:

1
A= 5 M Iz y2. (32d)

1
The x-component of B 7 is defined by

Bx7 = B;(7 + B§7 + Bxp7, (33a)
C7y +d73
BY; = ¥ x b7y (s W] 4 q7x  ChibZhr (v y2)] ., (33b)
Tie S sty T Ty O[T (Xl
¥
ch[17,7 (X Xx4)] ch[17q7 (X5 X)]
BY, = 77 n f6) 17 . (33
9T T TR (T b)) T (W by e Ol %)
1A
Bxp7 = ﬂZW = m J7 Y (33d)
y
| |
and the y-component of B 7 by
By7 = B;/(Y =+ Bz//7+ Byp7, (34a)
C
¥
BX — 7 sh[b7y7; (y3 y)]+d7)ﬁ7 shb7h7 (y y2)l sin[b7p7 (X x4)],  (34b)

= C
i o, " sh b7y ty sh b7y t7

¥ h{l707 (X Xa)] sh[17p7 (x5 X)]
B, = o7, SMLTCn7 g n7_2%s sin[17 . (34c
v n7=1 nt sh(17n7 7) n sh(17n7 t7) [ " (y yZ)] (342)
Bypy = AT g (34d)

x
where h7 & n7 are the spatial harmonic orders in Region 7; c7, d7, c7),, d7}, eYﬁ7 and f7ﬁ7 the
integration constants; b7,; = h7 p tywithti; = X5 Xg;and 17,7 =n7 p tywithty; =y3 Yo
The coefficients ¢c75 & c7}), and d7§ & d7}, are respectively determined using Fourier series

expansion of Azljgx,\y=y2 and Azzjgx,\y=y3 [see Figure 4g] over the interval X = [X4, X5] =
[Xa, Xg + t7]:
Xt tr 1 h i
. _ . .
C70 - Fﬂ ) E ’AZ].Jyzy2 AZP?Jy:yz dx, (35a)
4
5 Xzt h i
CThy = to b7hy  Anly=y, Awpily=y, C0S[b7hz (X X4)] dx, (35b)
X4
1 Xty 1 h i
. _ . .
d70 - g ) E AZZJy:y3 AZP7Jy:y3 dx, (350)
4
5 Xty h i
d7p; = to b7h7  Azdy=y, Awprly=y, COS[D7h7 (X X4)] dx. (35d)
X

X4
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The coefficient e7ﬁ7 and fYﬁ7 are respectively determined using a Fourier series expansion of m; my

Bys X=xs By and m; ms Bys X=xa By [see Figure 4g] over the interval y = [y,, y3] = Y2, Yo+ t7 :
Y7 ty7
o2 7 g B in[17 d 36
67y, = a m—4 Y4 x=xe YP7 x=xs sin[17,7 (y y2)] dy, (36a)
Y2
Y2 ty7
- 2 M7 g B inf17 d 36b
Y= ﬂ m—s Y5 x=x4 YPT x=x4 sin[17,7 (y y2)] dy. (36b)
Y2

The expression of ¢7%, d7%, ¢7%,, d7%,, €7}, and {77, are developed in the Appendix C.

2.6. Solving of Cramer’s System

The integration constants can be determined by solving the following linear equations (i.e.,
Cramer’s system) which can be written in matrix form as [69]

[Icy=[sc] ! [ES], (37)

where [IC] is the integration constants vector (of dimension Xmax 1),
h i

cl= [ic1 [ic2] [ic3] [Ic4] [Ics] [Ice] [Ic7] . (38a)
[1C1] = [d1fy]. (38b)

[hI02]=[02ﬁz]- : (38¢)

[IC3]= 3%, d3¥, f3', (38d)

[|c:4]=h c4X, dar, ed), I, (38e)

[|c:5]=h c5%; d5% e5'. 5. I, (38f)

[|cs]=h cBy CcBY; d6Y d6Y, e6r, f6, I, (389)
[|c7]=h 77X, d7X d7y, e7r, f7), I, (38h)

[ES] the electromagnetic sources vector (of dimension Xmax 1),

[ES] = " [ES1] [ES2] [ES3] [ES4] [ES5] [ES6] [ES7] IT, (3%a)
[ES1] = [ES16p; + ES17p], (39b)
[ES2] = [ES26n, + ES27h] (39¢)
[Ess]:h 0 0 ES36ns I, (39d)
[ES4] = ! 0 0 ES47n4 I, (39%)
[E85]=h 0 0 ES56p5 ES57ns I, (39f)
[E86]=h ES6ly 0 ES62 0 0 0 I, (390)
h i

[ES7]= ES7l, 0 ES72 0 0 0 (39h)
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and [BC] the boundary conditions matrix (of dimension Xmax  Xmax)

2 0 [BC13] [BCl4] [BCI5| [BC16] [BCI7] °

0 [I] [BC23] [BC24] [BC25] [BC26] [BC27]
[BC31] [BC32]  [I] 0 0 [BC36] O
[BC] = & [BC41] [BC42] O [] 0 0  [BC4T] 4, (40a)
[BC51] [BC52] O 0 [I] [BC56] [BC57]
[BC61] [BC62] [BC63] O  [BC65]  [I] 0
[BC71] [BC72] O  [BC74] [BC75] O []
in which [I] is identity matrix, and
h i
[BC13] = h Q3chihs QI3dnipg Q13fhing
[BCl4}=h Ql4chips Qladnina Qldening ;
[BC15]:h Q15ch1hs  Q15dh1hs Ql15ep1ns Q15fh1ns - (40b)
[BC16]=h Ql6cpyo Q16cnine Q16dh1o QL6dnipne Qlbeping Q16fh1ne

[BC17] = Ql17chio Ql7Chihy Q17dpio Q17dnin7 Ql7ensny Q17fhyn7

for Region 1,
h i
[BC23] = h Q23hzns Q23dnans  Q23fhans

[BC24] =, Q24cnopa Q24dhoha  Q24enzna i

[BC25] = Q25Chops Q250nzps  Q2%€nzns  Q25fhzns - (40c)
[BC26] =, Q26cnp Q26Cnzne Q26dhzo Q26dhzne  Q26enzne  Q26fhan
[BC27] = Q27chyo Q27chyn7 Q27dh2o  Q27dhan7  Q27enzn7  Q27fhon7

for Region 2,
h it
[BC31] = ) Q3ldpzpy 0 O
I
[BC32] = 5 0 Q32pzpy O g
0 0 0 0 0 0 (40d)
B =9 o 0 0 0 0 0
Q36cnzo Q36Cn3he Q36dnzo Q36dnzhe Q36enzne Q36fzne
for Region 3,
h it
[BC41] = ) Q4ldpgpy 0 O
I
[BC42]: 0 Q420h4,h2 0
2 (40e)
0 0 0 0 0 0
[BC47] =9 o 0 0 0 0 0

QA4Tcnso QATChan7 Q47dnso Q47dnan7 Q47ensn7 QA47Tnan7
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for Region 4,

[BC51] =
[BC52] =

[BC56] =

[BC57] =

for Region 5,

for Region 6,

for Region 7.

h
h

§
j o

17 of 39
it
Q51dh5,h1 0 0 0.
I
0 Q520h5,h2 0 0 3
0 0 0 0
0 0 0 0 z
Q560n50 Q56Cnsns Q56dns0 Q56dn5h6  Q56€ns N6 Q56fn5n6 (40f)
0 0 0 0 3
0 0 0 0 0
0 0 0 0 z
0 0 0 0
Q57Cn5,0 Q57chsn7 Q57dnso  Q57Chsp7  Q57ensn7 Q57fn5,n7
h i
[BCS1] = QB1dyn Qbldrgn 0 0 0 O
T
[BC62] = 20 0 Q62C0h2 Q62Ch6,h2 0 03
0 0 0
0 0 0
0 0 0
B
[BC63] = 0 0 0
0 0 0 (40g)
> Q63Cn6 h3 Q63dngns Q63fnen3 3
0 0 0
0 0 0
0 0 0
[BC65] = . . .
Q65Cn6h5 Q65dn6,h5 Q65¢n5n5 Q65fne ns
0 0 0
h iT
[BCTI = QT1dyn Q7ldyp 0 0 0 0
T
[BC72]220 0 Q72C0,h2 Q720h7,h2 0 03
0 0 0
0 0 0
0 0 0
BC74] =
[ ] 0 0 0
Q74ch7ha QT74dn7na Q74en7na (40h)
> 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
BC75] =
[ ] 0 0 0 0
0 0 0 0
Q75Ch7,ns  Q750n7hs  Q75en7ns  Q75fn7ns
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The corresponding elements in (39) and (40) are defined in the Appendix C. One can note that
(37) consists of
" #
Hlmax + H2max +2 H3max + N3max +2 Hé4max + Nédmax

Xmax = 41
max +2 (H5max + N5max) +2 (H6max + N6max + 1) + 2 (H7max + N7max + 1) (41)

equations and unknowns. Any mathematical software can quickly give the numerical solution of (37).
This set is implemented in Matlab R by using the sparse mgtrix/vectors according to the method
described in Section 2. The analytical solutions of A; and B = By; By;0 in the various regions
have been computed with a finite number of spatial harmonics terms H1max - H7max (for the x-edges)
and N3max - N7max (for the y-edges). Usually, the two reasons for the possibility of including a finite
number of harmonics is a limiting computational time and numerical accuracy [70].

2.7. Numerical Problems: Harmonics and Ill-conditioned System

A discussion on the numerical limitations of such semi-analytical models has been presented in
[70,71]. Numerical methods, which use a meshed geometry, will have a limited accuracy related to the
density of the mesh. The Maxwell-Fourier methods exhibit a similar problem due to the periodicity
of Fourier series, and consequently to the finite number of harmonics.

The size of the model, or more specifically, the size of the matrix [BC], as defined in (40),
depends on the number of: i) subdomains, ii) boundary conditions, and iii) spatial harmonics terms.
Consequently, an electromagnetic device with a high number of teeth/slots results in large model
and, hence, in high computational time [71]. The numerical accuracy of magnetic field solution and
the computational time depend on the highest spatial harmonic orders considered in the different
subdomains. It is interesting to note that the maximum number of harmonics also depends on
the available memory of computer. Beyond a certain number of harmonics, the Cramer’s system
becomes ill-conditioned and the results inaccurate [70]. Therefore, the number of harmonics has to
be carrefully selected to obtain a correctly converged solution. An extensive discussion on the effect
of the harmonics number taken into account is given in [72,73]. However, owing to the different
sizes of the regions (e.g.,the finite height/width,...), such series could be truncated at different points.
Considering an optimal ratio between the numbers of harmonic terms taken into account in each
region might lead to a lower calculation error and a higher rate of convergence [73].

Limiting the number of harmonics will lead to inaccurate field solutions at discontinuous points
in the geometry, especially at the corner points of magnets, current regions, or soft-magnetic material
[70]. Moreover, the Gibbs phenomenon can become dominant at these positions (at interfaces between
region with unequal width) [74].

3. Comparison of the Semi-Analytic and Finite-Element Calculations

3.1. Introduction

The objective of this section is to show the effectiveness of 2-D subdomain model on the magnetic
field distribution. The main parameters of the air- and iron-cored coil are given in Table 1. For the
comparison, the system has been set up using Cedrat’s Flux2D software package (i.e., an advanced
finite-element method based numeric field analysis program) [8]. The finite-element computations
are done under same assumptions on which the semi-analytical model is based [see § 2.1. Problem
Description and Assumptions]. The spatial harmonics terms in each subdomain, given in Table 1
(rounded to 0 decimal), have been imposed according to an optinal ratio as indicated in [72,73], i.e.,
for Hlmax given,

t t
H max = Hlmax X and N max = H max = (42)
tXl ty
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Figure 5. 2-D FEA mesh for an air- or iron-cored coil.

The Cramer’s system (37) consists of 3,346 elements (representing the size of Cramer’s system to
solve) which is much smaller than the 2-D FEA mesh having 8,566 surfaces elements of second order
(viz., the triangles number of system). The 2-D FEA mesh for an air- or iron-cored coil is illustrated
in Figure 5. The personal computer used for this comparison has the following characteristics: HP
Z800 Intel(R) Xeon(R) CPU@2.4 GHz (with 2 processors) RAM 16 Go 64 bits. The computation time
of 2-D subdomain model is equal to 0.01 sec for 2-D subdomain model and 1 sec for the 2-D FEA. The
proposed design approach can thus reduce the computation time by approximately 100-fold versus
to 2-D FEA.

3.2. Results Discussion

The 2-D subdomain model is implemented so that it is possible to get values of A; in the air-
and iron-cored coil. Figure 6 present the equipotential lines (30 lines) of A; in the system with the

Table 1. Parameters of the Air- or Iron-cored Coil.

Parameters, Symbols [Units] Values
Number of series turns, Nt [-] 1,600
Maximum direct current, | [A] 5
Surface of conductors, S [mm?] 800
Current density (due to supply currents), J,, [AZ/mm?] 10
Effective axial length, L, [cm] 4
Geometrical parameters in the x-axis, FX1; X2; X3; X4; X5; Xgg [cm]  0; 10; 12; 16; 18; 289
Geometrical parameters in the y-axis, fys1; y2;y3; Y40 [cm] T0; 10; 14; 24g
Relative magnetic permeability of the iron, mj.n [-] 1,500
Number of spatial harmonics for Region 1, H1max [-] 300
Number of spatial harmonics for Region 2, H2nax [-] 300

Number of spatial harmonics for Region 3, FH3max; N3maxg [-] £107; 2689
Number of spatial harmonics for Region 4, TH4max; N4maxg [-] 1107;268g
Number of spatial harmonics for Region 5, FH5max; N5maxd [-] T43;268g
Number of spatial harmonics for Region 6, TH6max; N6maxd [-] T21;268g
Number of spatial harmonics for Region 7, TH7max; N7maxg [-] T21;268g
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2-D Subdomain model

@) (b)

Figure 6. Equipotential lines of A; with the 2-D subdomain model and FEA for an (a) air- and (b)
iron-cored coil.

2-D subdomain model and 2-D FEA. As can be seen, a good evaluation is obtained, comparing those
results with 2-D FEA, for both air- and iron-core.

The paths of the magnetic flux deqsity validation for the comparison are given in Figure 7.
The waveforms of the components of B = By;By;0 are represented on the various paths in
Figure 8 - Figure 12. The solid lines represent the magnetic flux density computed by the 2-D FEA
and the circles correspond to 2—[? subdomain model. It can be seen that a very good agreement is
obtained for the components of B, whatever the paths, for both air- and iron-core. This confirms that
the effect of global saturation, with a constant magnetic permeability corresponding to linear zone
of B(H) curve, is taken into account accurately. Nevertheless, the numerical accuracy of magnetic
field solution is reduced as the number of considered is lowered. The relative error is 1.5 % for
the different components of magnetic flux density. Some slight discrepancies are observed between
numerical and analytical results [see Figure 11 and 12b] which can be caused by the finite number
of spatial harmonic taken into account in the semi-analytical model according to the x- and y-edges
[see § 2.7. Numerical Problems: Harmonics and Ill-conditioned System]. The increase of harmonics
number can resolve these deviations, however, at the expense of the computation time.

4. Conclusion

An overview on the existing (semi-)analytical models in Maxwell-Fourier methods (i.e.,
multi-layers models and subdomain technique) with the saturation effect has been realized. It
has been demonstrated that there is no (semi-)analytical model based on the subdomain technique
taking into account the iron parts with(out) the nonlinear B(H) curve. Then, the new scientific
contribution on the 2-D subdomain technique in Cartesian coordinates to study the local magnetic
field distribution in the iron parts with a global saturation is presented in this paper.

For example, it was performed by solving 2-D magnetostatic Maxwell’s equations in Cartesian
coordinates (x,y) for an air- or iron-cored coil supplied by a direct current. The subdomains
connection is carried out in the two directions (i.e., X- and y-edges). The iron magnetic permeability
is constant corresponding to linear zone of the initial magnetization curve. However, nonlinear
magnetic materials could be accounted for by means of an iterative algorithm as in [48]. This
major scientific contribution will be applied to rotating and/or linear electrical machines with(out)
magnets supplied by a direct current or alternate current (with any waveforms) whose the analysis
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Figure 7. Paths of the magnetic flux density validation for the comparison.

@) (b)

Figure 8. Waveform of the magnetic flux density for Path 1: (a) x- and (b) y-component.

@) (b)

Figure 9. Waveform of the magnetic flux density for Path 2: (a) x- and (b) y-component.


http://dx.doi.org/10.20944/preprints201609.0106.v2
http://dx.doi.org/10.3390/mca22010017

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 January 2017 d0i:10.20944/preprints201609.0106.v2

22 of 39

@ (b)

Figure 10. Waveform of the magnetic flux density for Path 3: (a) x- and (b) y-component.

(@) (b)

Figure 11. Waveform of the magnetic flux density for Path 4: (a) x- and (b) y-component.

(@ (b)

Figure 12. Waveform of the magnetic flux density for Path 5: (a) x- and (b) y-component.
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would be based on a 2-D semi-analytical model in Cartesian coordinates (e.g., plane linear machines,
axial-flux machines,...). An extension of the 2-D subdomain technique in polar coordinates as
well as various electrical machines (viz., radial-/axial-/transverse-flux machines, linear machines,
U-/E-cored electromagnetic device,...) will be made in the next studies.

This new approach to account for the effect of global saturation is (semi-)analytically based and
takes significantly less computing time than the FEA (approximately 100-fold versus to FEA); it is
eminently suitable for design and optimization of the electromechanical systems. Predicted results
from the exact (semi-)analytical model have been compared finite-element predictions, and good
agreement has been achieved, in both amplitudes and waveforms.

Author Contributions: The work presented here was carried out in cooperation among all authors, which have
wrote the paper and have gave advices for the manuscripts.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A The 2-D Magnetostatic General Solution in Cartesian Coordinates

Appendix A.1 Governing Partial Differential Equations (EDPS)

' -
By assuming that the term 1D 1t is negligible, the magnetostatic Maxwell’s equations are
represented by Maxwell-Ampeére

1 | |
rot H = J (with J = 0 for the no-load operation), (A.la)
and Maxwell-Thomson .
div. B =0 (Magnetic flux conservation), (A.1b)
' | L |
B=rot A with div A =0 (Coulomb’sgauge), (A.1c)

n | | L ||
where A, B, H, and J are respectively the magnetic vector potential, the magnetic flux density,

magnetic field, and thelcurrent.density (due to supply currents) vectors.
The field vectors B and H are coupled by the magnetic material equation

L]
B=m F|+m0 |\-/|, (AZ)

where I\!/I is the magnetization vector (with l\!/l = 0 for the vacuum/iron or I\!/I & 0 for the magnets

according to the magnetization direction [4]), and m = my m, the absolute magnetic permeability of

the magnetic material in which my and m; are respectively the vacuum permeability and the relative

permeability of the magnetic material (with m; = 1 for the vacuum or m, & 1 for the magnets/iron).
By using (A.1) and (A.2), the general EDPs of magnetostatic are defined by [68]:

L 1 | | L
XA n DA=17+ XB, (A3a)
¥ ¥ !
Xa=grad(n)~rot A , (A.3b)
' T b
Xg=mg grad(n)*M+n rot M (A.3c)

where n =1 mis the absolute magnetic reluctivity of the magnetic material.
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1

By neglecting the end-effects (i.e., the system is infinitely long which leads to A = f0;0; A;g:

the magnetic variables are independent of z), (A.3) in Cartesian coordinates (x,y) with m = CSt can
be expressed by:

_ A, TPA; _
DA, = ﬂTzz + ﬂyZZ = ES, (A.4a)
ﬂMy ﬂMx
ES = m J,+m —_— A.4b
z 0 x ﬂy ( )

Appendix A.2 General Solution

It is interesting to note that A; is governed by Poisson’s equation, when there is one or more
electromagnetic sources (i.e., ES & 0), or Laplace’s equation, when there is no electromagnetic sources
(i.e., ES = 0). According to the method of separation of variables, the 2-D magnetostatic general
solution of A; in Cartesian coordinates (X, y) can be written as

Az = Al + A+ Agp, (A.53)
A= ¥ Crch(byy) EX cos(by X) , (A5b)
h=1 + Dﬁ sh (bh y) + Ff)1( sin (bh X)
Cy+D).y Ey+F x o o )
A= L ¥ Chocos(lny) E} ch(l, X) : (A.5¢)
n=1  +Dp sin(ln ) +F sh(ly x)

where Azp are the particular solution of A; respecting the second member ES in (A4), Cj - R &
Cg - F! the integration constants, b, & I, the periodicity of AX & A7, and h & n the spatial harmonic
orders. '

According to (A.1c), the components of B = By;By;0 can be deduced from A; by

TA; TA;
Bx = and By = A6
X Ty y x (A.6)
which leads to A
Bx = B} + By + ﬂﬂ;P, (A.7a)
Dy Ej+Fwx 4 "
Bx= L ¥, Cish(bny) EX cos(by X) . (ATb)
—— + D) ch(by ) +FX sin(by x)
y gV, gy
Dy Ej+FR.x g o )
By = + Cn sin(ln y) E) ch(l, X) , (A.7¢)
=1 + D} cos(ln y) +F sh(lh, x)
and A
- y P
By=BJ+By S (A8a)
Fa( C6(+D6(,,y g " u
By = + ¥, G y) EX sin (b, X) , (A.8b)

h=1 + D) sh(bp y) + R cos(by Xx)

d0i:10.20944/preprints201609.0106.v2
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o +pY
0 0 wY 4o

#
By = + ¥ . Cnocos(lyy) EX sh(In X) : (A 8c)
h=1 +Dp sin(ln y) +F ch(ln x)

Appendix B Simplification of Laplace’s Equations according to imposed Boundary Conditions

Appendix B.1 Case-Study no 1: ""A; imposed on all edges of a region™

Figure B.1a shows a region (for x 2 [x;, x;] and y 2 [y, yt]) whose the magnetic vector potentials
are imposed on all edges. By applying the principle of superposition on the magnetic quantities,
Figure B.1a is redefined by Figure B.1b.

In the case-study no 1, the magnetic vector potential A, = A + Al e, (A.5), is redefined by

v Co h dX sh[b ?
AX = S shibn (e W], 9 shlbn (v W)l

sinfbp (x x)], B.la

(@)

(b)

Figure B.1. A; imposed on all edges of a region: (a) General and (b) Principle of superposition.
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Figure B.2. Particular case: A; = 0 on x-edges and A; imposed on y-edges of a region.
y_ ¥ (e¥ sh[ly (xr X)] . 1 sh[l, (x x|)])
— + _n sl V7 i B.1
A= 1, T sh(ln ) I,  sh(l, &) sinfln (v y0l (B.1b)
1
the component By = BX + B}, of B, i.e., (A.7), by
v ¢ h[b h[b
B;((: C)}f' c [ h (yt y)]+d)|f| c [ h (y y|)] Sin [bh (X Xl)]1 (BZa)
h=1 sh bh ty sh bh ty
¥
y _ y shiln (xr X)] oy shiln (x )]
= _— _— = B.2
BX - €n Sh(ln tX) fn Sh(ln tX) COS[In (y yl)]: ( b)
| |
and the component By = B} + B} of B, i.e., (A.8), by
v ¢ h[bn ( )] hbn ( )]
snibh, (Yt Yy shib, (¥ ¥
B = X +d¥ cos[b , B.3a
y bt Ch sh bh ty h sh bh ty [ h (X Xl)] ( )
¥
y _ y chiln (xr X)] oy chln (x x)] .
= —_— _— - B.3b
By =1 €n Sh(ln tX) n Sh(ln tX) Sln[ln (y y|)]’ ( )

where cy, dy, e and fJ are new integration constants; b, = h p t, with t, = X, x;;and I, =
np twithty =y vy,

For the particular case illustrated in Figure B.2 (whose the magnetic vector potentials are zero on
x-edges and imposed on y-edges), the magnetic vector potential A, according to (B.1) with AY = 0,
is expressed by

¥ (cﬁ shiby (ye )1, & shibn (v y.)])
A = T in[b : B.4
“= by, shb, by sh by t sinfon (%)l (B42)
| |
the x-component of B, according to (B.6) with B}, = 0, by
x ¢ h[b h[b
B, = o hbn O NI hlbn & YOI gorp )1, (B.4b)

o1 " shoby ty " sh b ty
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(@)

(b)
Figure B.3. By imposed on x-edges and A; imposed on y-edges of a region: (a) General and

(b) Principle of superposition.

1
the y-component of B, according to (B.3) with By = 0, by

v ¢ D)
B, = o Shibn (vt W1, o shibn (v y1)]
y her 0 shoby " shoby ty

cos[b, (x x)I] (B.4c)

Appendix B.2 Case-Study no 2: " By and A; are respectively imposed on x- and y-edges of a region*'

Figure B.3a shows a region for (x 2 [x;,x] and y 2 [y, yi]) whose the magnetic flux densities
and vector potentials are respectively imposed on x- and y-edges. By applying the principle of
superposition on the magnetic quantities, Figure B.3a is redefined by Figure B.3b.

In the case-study no 2, the magnetic vector potential A, = A + Al ie., (A5), is redefined by

) e y) g+ (@& i) dy
A} = ¥ shiby (e W] L 9 shiby (v y)] :
Tocy Bosh(eg) B s(byg)  coSlPn (Xl

(B.5a)
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y ¥ en chlla (x x)]  fa ch[ln (% x)])
A; = _ = - ——— == sin[l , B.5b
T Th sh(ls ) I,  sh(l, ) LU D) (B.5b)
| |
the component By = BX + B} of B, i.e., (A7), by
cy +dg
Bx = ¥ x chlby (e W], qx chiby (v y)] , (B.6a)
¥
y _ y chiln (x x)] .y chln (xr X)]
Bx - h sh (I, ©) fa sh(ly ©) cos[ln (y yDI (B.6b)
| |
and the component By = B + Bj of B, i.e., (A.8), by
v ¢ h[b h[b ’
¥ hilhn (x x)] sh[ly (xr X)]
BY = y Sn—|+fy LS S AT BN T , B.7b
Yy - n Sh(ln t)() n Sh(ln t)() [ n (y y|)] ( )

where c§, dX, cX, d¥, e} and f3 are new integration constants.

Appendix C Elements of Cramer’s Systems

Appendix C.1 Simplifying Function of General Integrals

For the determination of the integral constants, it is required to calculate general integrals of the

form
Iptw
F = sin[as (I [5)] dl, (C.1a)
I
Iptw
Fes = cos[ac (I [Ig)] sin[as (I )] dl, (C.1b)
I
Iptw
Fss = sinfas; (I Ia)] sinfas; (I ls2)] dI, (C.lc)
I
Ip+w
Fs = | sinfas (I 15)] dl, (C.1d)
ly
Ip+w
Fios = 12 sinfas (I 1s)] dl, (C.1e)
ly
Ip+w
Fons = chfagn (I len)] sinfas (I 15)] dI, (C.1f)
I
Iptw
Fohs = shfasn (I Isp)] sinfas (I I5)] dl. (C.1g)
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The functions (C.1) will be used in the expression of the integration constants. The expressions of
(C.1a) - (C.1c) have given in [69]. The development of (C.1d) - (C.1g) gives

" #
sinfas (h+w Is)] sinfas (I} Is)]
s F(l + s (I + I I s (I s
Fo (sl W) = as f(l, +w) cos[a (|a2W )1 I cosfas (I Is)lg (20
2 2 feos[ag, (h+w Is)] cos[as (I} Is)lg o 3
a2 (+w)? cosfas (h+w 1] 12 cosfas (i I)] %
Fine (s, Io, 11, W) = +2 as f(l, +w) sin[as (|;;'W Is)] 1 sinfas (I, 1s)]g . (C2b)
> C ) I
a shlagy (I Ien)] sinfas (I 1s)]
o shag (h+w )] sinfas (h+w )]
+a, chlagn (I len)] cosfas (I 1s)]
Fore (acp. a0, I e, |y W) = chlaesn (h ;2:V+a§;ch)] cosfas (h+w Is)] . (c20)
2 C ) 3
a chlasn (I Isn)] sinfas (I Is)]
o chfag (h+w ln)] sinfas (h+w 1))
+a, SN O ln)l cosfas (I 15)]
Fshs(ash:as,lshals:lhw): Sh[aSh (II -(:2\:V+ag)|5h)] COS[aS (II+W IS)] . (C.Zd)

Appendix C.2 Expression of d1; for Region 1
By incorporating F; (x) [see Figure 4a] into (7) and by using (13), (18), (23), (28) and (33), the
development of (7) gives

¥
o, O Qe +dd, Qlidups +  f3; Ql3fun
= n3=
¥

¥
* o O Qléwpe 4, Qlddnp + 1e4ﬁ4 Qldens ns
= nd=
¥ ¥
+ 5% Q15¢H ps + d5%. Q15d + e5'c Q15en; 05 + 57, Q15f
a1y, = - hs Q15Ch1 hs hs  Q150h1 ns - ns Q15€n1ns ns Q15fhins . (C3a)
*+ Bl Ql6Cnips+ 06l Qlédwps + €65 Ql6enng + 6/ QL6nyng
= ne=
¥ ¥
* ST Qlonp + A7 QlTdwy + €7n; QL7617 + 1677 QL7fhy 07
ESly;
_ 2 m
Q13Ch1,h3—a s coth b3ps tyz3  Fes (D343, blhg, X1, X1, X1, t3) (C.3b)
X
_ 2 m
Q13dnyh3 = L m csch b33ty Fss (b3pa, blpg, Xq, X1, X1, tya) (C.3¢)
X
_ 2 m
Q13fh1,n3— Fl m*3 csch (133 t3) Fsps (B3n3, blpg, X1, X1, X1, £3) (C.3d)
X
_ 2 m
Q14Ch1,h4—a ) coth bdy, tys  Fss (bdhg, by, Xs, X1, X5, tea) (C.3¢)
X
_ 2 m
Q14dhypg = . ™ csch bdpg tyy  Fss (bdng, blhg, Xs, X1, Xs, Tea) (C.3f)
X
_ 2 m
Q14ehl,n4—t71 ™ csch (B4ng ta) Fohs (B4n4, blhg, X, X1, X5, tea) s (C.39)
X

d0i:10.20944/preprints201609.0106.v2
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2 m
Q15¢Ch1 hs = T ms coth bSys tys  Fss (b5ps, by, X3, X1, X3, Txs) (C.3h)
X
2 m .
Q15dh1 5 = te m: csch bSps tys  Fss (DSps, blhg, X3, X1, X3, Txs) (C.3i)
X
2 m .
Q15eh1,n5:t*1 m; csch (15n5 txs) Fshs (B5ns, blhg, X4, X1, X3, txs) (C.3)
X
m
Q15fh1ns = ) m; csch (I5ns txs) Fsns (15ns, blhg, X3, X1, X3, ts) (C.3Kk)
X
2 ¢ Fs (b1 tye) forh6 =0
my S h1s X1, X2, Txe orno =
16Chine = — — cal
Q16¢h1 ng ti1 Mg coth bb6yg s Fes (b6hg, b1h1, X2, X1, X2, ) forh6 60 ( )
C
2 m Fs (blhla X1, X2, tx6) forh6 =0
16d = — — C.3m
Q160 ne ty Mg csch bbpg tys  Fes (b6pg, blpg, X2, X1, X2, tye) forh6 &0 ( )
2 m
Q16enyn = t m; csch (B6ns txe) Fens (166, blh1, X2, X1, X2, tue) , (C.3n)
X
2 m
Ql6frns = - oo c5oh (1Bus ) Fons (FBrs, blon, X, X1, X2 Bis) (C-30)
X
2 mq FS (blhl, X1, X4, tX?) forh7=0
1TChp7 = — -+ C.3
QL7Chyn7 ta my coth b7p7 €7  Fes (b7h7, blhy, X4, X1, Xs, 67) ~ forh7 &0 (%)
C
2 mq Fs (blhl, X1, X4, tx7) forh7=0
17d = — — C.3
QL7dny. 7 ty my csch b7y t7  Fes (07h7, b1pg, X4, X1, X4, t7) forh76 0 (C.30)
2 m
Ql7enyn7 = t m*i csch (07n7 t7) Fens (17n7, blpg, X4, X1, X4, &7) (C.3r)
X
2 m
Q17fh1,n7 = ms csch (07n7 t7) Fens (1707, b1h1, X5, X1, Xa, t7) (C.3s)
2 mq .
ESlGhl = Tl mi BXPGJy:yZ FS (blhlv Xll X2! tX6)1 (Cgt)
X
_ 2 my .
ESl?hl - til m77 BXP7Jy:y2 FS (blhlv X1, Xq, tX?)' (Csu)
X

Appendix C.3 Expression of c2};, for Region 2

By incorporating G, (x) [see Figure 4b] into (11) and by using (13), (18), (23), (28) and (33), the
development of (11) gives

¥
- c3%; Q23Chpn3 + d3%; Q23dhy g +r13:lf3ﬁ3 Q23fhyn3
¥
+ c4X, Q24chypg +d4Y, Q24dpypg + ed’, Q2denyng
h4§1 nél;l
+ 5% Q25Chy s + 055 Q250 ps + 657 Q25e1, 5 + 57, Q25fn,
Czﬁz — h5§1 h5 ,h5 h5 ,hS n5§1 n5 ,n5 n5 ,n5 ’ (C4a)
+ C6X; Q26Chyne + U6, Q26dnpps + €675 Q26en2n6 + 167 Q262
h6=0 n6=1
¥ ¥
+ C7%, Q27Chpn7 +d7%, Q27dyppy + 7', Q27enpn7 + 167, Q27fhon7
h7=0 n
(ES26y,, + ES2715)

2 m
Q23ch2,h3:t72 m*i csch b3pz tyz  Fss (b3pa, b2pp, X1, X1, X1, &3) (C.4b)
X
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2 m
Q23dpon3 = to m*i coth b3ps tyz  Fs (0343, b2h2, X1, X1, X1, Tx3)
X
2 mp COs 1313 3
Q23fpon3 = to M sh(lztt;/) Fshs (13n3, b2h2, X1, X1, X1, t3)
X n X.
2 m
Q24Ch2,h4:Tz mTZ; csch bdpg by Fes (D4hg, D22, X5, X1, X5, tea)
X
2 my
Q24dh2,h4= FZ E coth b4h4 ty4 Fs (b4h4,b2h2,X5,X1,X5,tx4),
X
2 my, cos M4y ty
Q24eh2,n4=t72 M M Fshs (14n4, b2h2, X6, X1, X5, tya)
X n X
2 m
Q250h2,h5=?2 e csch b5y tys  Fs (b5ps, b2y, X3, X1, X3, s)
X
2 m
Q25dpp 5 = to me coth b5ps tys  Fes (05hs, b2h2, X3, X1, X3, txs)
X

2
Q25€epy ns = o
X2

my cos I5p5 Tys
ms  sh (155 txs)

Fshs (15ns, b2h2, X4, X1, X3, ty5)

2 my cos I5;5 tys
25f = — = — —— F 15,5, b25, X3, X1, X3, ts5),
Q25fhon5 te M Sh(i5s ) shs (15n5, 022, X3, X1, X3, tys)
_ 2 m Fs(b2h21X1!X21tX6) forh6 =0
Q26Chohe = 7— —
to Mg csch bbpg tye Fos (b6hg, b2h2, X2, X1, X2, txe) forh6 &0
2 m Fs (b2, X1, X2, ty6) forh6 =0
Q26dn2he = o
x2 Mg coth b6hg tye  Fes (b6he, b2n2, X2, X1, X2, tg) ~ forh6 &0
2 my cos 16y tyg
26 =— = — — F 16,6, D25, X2, X1, X2, tyg),
Q26€n,,ne te M sh(16, o) chs (16n6, D22, X2, X1, X2, txe)
2 my cos 06ns tys
26f = — = ——  — F 16,6, b2)5, X3, X1, X2, Tg),
Q26fh2n6 te M Sh(16m T) chs (16n6, 02h2, X3, X1, X2, tye)
_ 2 mo Fs(b2h2,X1,X4,tX7) forh7=0
Q27chyn7 = oo
x2 Mz csch b7h7 ty7  Fes (D7n7, b2n2, X4, X1, Xa, t7) ~ forh7 &0
_ 2 m Fs (b2h21 X1, X4, tx7) forh7 =0
Q27dnony = — —
te m7  coth b7hy b7  Fes (b7h7, 0212, X4, X1, Xg, t7)  forh7 60

2 my cos 17,7 ty
Sh(|7n7 tx7)

Q27enyn7 = —

2 my cos 17,7 ty
Sh(|7n7 1:x7)

to my

Q27fhon7 = th m*7
ES261, = tixz %
ES27y = tixz %

Fens (1707, 02n2, X4, X1, Xa, t7)
FChS (|7n71 b2h2! X5v Xll X4! tX7) ]
BXPGjy:y3 FS (b2h21 X1, X2, tXG) )

Bxp7ly=y, Fs(D2h2,X1,X4, 7).

d0i:10.20944/preprints201609.0106.v2

31 0f 39

(C.4c)

(C.4d)

(C.4e)

(C.41)

(C.49)

(C.4h)

(C.4i)

(C.4j)

(C.4Kk)

(C.41)
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Appendix C.4 Expression of ¢35, d3j, and fBﬁ3 for Region 3
By using (4), the development of (15a) gives
¥
C3ps = dif; Q31dpgpa, (C.5a)
h1=1
2 b3p3
Q31ldpzp1 = ts bl th blp ty1  Fss (b1pg, b3pa, X1, X1, X1, £&3) - (C.5b)
X
By using (8), the development of (15b) gives
¥
d3fs = c2}, Q32Ch3n2, (C.6a)
h2=1
2 b3y
Q32¢h3he = te b th b2p; ty,  Fss (02np, b33, X1, X1, X1, ty3) - (C.6b)
X
By using (27), the development of (16) gives
C6;1(6 Q36C'n3,h6 +d6ﬁ6 Q36dn3,h6
3, = ES36,3  M670 , (C.79)
n3 y y
+ =1 66n6 Q366n3’n6 + f6n6 Q36fn3’n6
ne=
_ 2 y3 Fs I3n3,¥2,¥2, 3 Fs 13n3,¥2,¥2, b3 forh6 =0
Q36Cn3,h6 Tt 13n3 ﬁ csch b6pe tys Fshs b6he, I3n3,y3,y2,y2,ty3 forh6 & 0 (C]b)
Y2 FS |3n3:y2:y2: ty3 F|S |3n3vYZ7YZ:ty3 for h6 = 0
36dn3pe = = 13 C.7c
Q36dngpe = g5 13na p6; CSCh bBhs s Fens Dbng, B3ns,y2,¥2. Y2, b3 fornge0 (70
— 2 |3n3
Q36en3ne = T T6ns csch (06ng txg) Fss 16n6, 13n3,¥2,Y2, Y2, b3 (C.7d)
n
— 2 I3n3
Q36fn3ne = 65 T6n coth (16ns tye) Fss 16, 1303, Y2, Y2, Y2, b3 (C.7¢)
n
I3n3
ES36n3 = Mg Jgg £ Fios 13n3,Y2,Y2, b3 . (C.71)
Appendix C.5 Expression of c4},, d4y, and e4ﬁ4 for Region 4
By using (4), the development of (20a) gives
¥
Chiy = dlp; Q4ldhgha, (C.8a)
h1=1
_ 2 bl
Q4ldnapr = tu bln th blp ty1  Fss (blhg, b4ng, X1, X5, X5, ta) - (C.8b)
X
By using (8), the development of (20b) gives
¥
dag, = 2, QA2Chs ha, (C.9a)
h2=1
b4n,
Q42Chan2 = th b2y, tyo  Fes (022, Ddng, X1, X5, X5, Txs) - (C.9b)

ty b2y,
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By using (32), the development of (21) gives

C7;,|(7 Q47Cn4,h7+d7ﬁ7 Q47dn4,h7

ey, =ESATny M0 , ,
+ ey e7n7 Q47en41n7 + f7n7 Q47fn4,n7
n7=
47 2 14 Y3 Fs l4ng,y2,¥2, 84 Fs 14n4,Y2,Y2, by forh7 =0
Chanr = = b7h7 te
Q nd,h7 by, n4 bih7 (S:?'Is((b7hh77 .:y;)) FShS b7h71 |4n4: Y3, Y2, Y2, ty4 forh7 &0
C
Qad 2 14 Y2 Fs V4 y2,¥2, 84 Fis 14ng,y2,¥2, b4 forh7 =0
== b7 t
M g T L 72?15(17:77,;77)) Fsns B7n7, 14n4,¥2,Y2, Y2, tya for h7 &0
2 14,
Q47en4,n7 = COth (|7n7 tX?) FSS |7n7: I4n41 y21 y21 y21 ty4 y
ty4 1 n7
2 14y,
Q47fnr = — csch (1707 t7) Fss 07n7, 14n4,Y2,¥2, Y2, b4
ty4 I7n7

ES47p, =

I4n4
my Jg7

Fios 14ns,Y2,Y2, 84 -

Appendix C.6 Expression of c5%;, d5%, €5} and f5). for Region 5

By using (4), the development of (25a) gives

¥
C5)l§5: dl)ﬁl Q51dh5,hll
h1=1
2 b5
Q51dhshy = te bT:i th bly; ty;  Fes (blpg, bShs, X1, X3, X3, txs) -
X

By using (8), the development of (25b) gives

2

52¢ = —
Q52¢hs5 12 T

¥
d5)f§5 = CZI)’I(Z Q52Ch5,h2!
h2=1
b5ps
bThz th b2h2 ty2 FSS (b2h2! b5h5! X1, X3, X3, tX5) '

By using (27), the development of (26a) gives

e5'c = ES56n5

¥ y , ,
+ e6n6 Q569n51n6+ f6n6 Q56fn5yn6
n6=1
( —
Y3 Fs 5ps5,¥2,¥2, 5 Fis B5ns5, Y2, Y2, bys forh6 =0
Q56¢ =& 150 1 cos(bbys tes)
n5n6 = g on - ﬁ Fons  bBhe, 15ns, Y3, Y2, Y2, tys for h6 6 0
Q56d 2 s Y2 Fs 5n5,y2,y2, 85 s 0505, Y2, Y2, tys for h6 =0
= = b .
none tyS " ﬁ% FShS b6h67 |5n51 y21 y21 y21 ty5 fOI’ h6 & O
2 155
Q56ens,ne = — coth (0166 ts) Fss 1606, 15ns,Y2, Y2, Y2, &5 |

6o CG;‘I(G Q560n5,h6+d6;1(6 Q56dn5,h6
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(C.11b)

(C.12a)

(C.12b)

(C.13a)

(C.13b)
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i I5n5
1:y5 |6n6
I5n5

ES56n5 = Mg Jgg " Fios 15n5,Y2,Y2, b5 .

Q56 fn5,n6 =

csch (06ng teg) Fss 16n6, 15ns,Y2,Y2, Y2, bys

By using (32), the development of (26b) gives

, ] 7YX, Q57Cnsp7 +d7%, Q57dpsh7
f5)s = ES57ps 770 ,

+ €7y, Q57ensnr + 7, Q57fnsn7
n7=1
Qs7c —2 g5 y3 Fs I5n5,¥2,¥2, 85  Fs B5n5,¥2, Y2, tys5 forh7 =0
NSNT T 15 1O ﬁm csch b7y 7 Fsps b7h7, 1505, Y3, Y2, Y2, bys forh7 & 0
Q57d -2 5 y2 Fs U5n5,¥2,¥2, 5 Fs 15n5,Y2,Y2, tys forh7 =0
nsh7 = 5 VN5 57— osch b7y 7 Fans b7h7, 15n5,Y2,Y2, Y2, bys forh7 &0
2 I5n5
Q57en5,n7=% 17, csch (1707 t7) Fss 07n7, 1505,Y2,¥2, Y2, 5
n
2 154
Q57fsn7 = — § coth (177 t7) Fss 1707, 05n5,Y2,Y2,Y2, b5
ty5 I7n7

15
ES57ps = M7 Jy7 —2

Fios 15n5,¥2,Y2, b5 .

Appendix C.7 Expression of c6%, d6%, c6%;, d6)s, e6;,¢ and {6 for Region 6
By using (4) and (27d), the development of (30a) and (30b) gives

¥
C6)ﬁ6 = ESBth dlﬁl Q61dh51h1,
hi=1

C
i Fs(blphg, xq, X2, txe) forh6 =0

1

61d = 1 1 th b1 Yy

Q h6,h1 te DIp h1 tyl 2 bbhg Fus (b6h61 bln1, X2, X1, X2, tx6) forh6 & 0
C

Kl - _
Esel, = G zPely=y, T h6 =0

forh6 &0

By using (8) and (27d), the development of (30c) and (30d) gives

¥

d6%, = ES6246 02X, Q62Chs 2
h2=1
. Fs (D24, X1, X2, tyg) forh6 =0
T h2y A1, A2, Ix6 -
Q62Ch6,h2 = tils b% th b2h2 ty2 Yo > X
X h2 2 b6h5 Fes (b6h6! b2h21 X2, X1, X2, tXG) for hé & 0
C

i Azpeiy=y,  forh6 =0

ES6216 =
hé for h6 6 0
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(C.14d)

(C.14e)
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(C.15a)

(C.15b)

(C.15c)

(C.16a)

(C.16b)
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By using (24), the development of (31a) gives

5 Q65Cng hs + d5K:  Q650ne ns

e6y — h5=1
né ¥ y y
+ - 65n5 Q65en6,n5+f5n5 Q65fh6n5
n5=
2 mg
Q65Che s = te M csch bSys tys  Fsps bSps, 16n6, Y3, Y2, Y2, by
y

Me

2
Q650dp6 h5 = T ms csch b5ps tys  Fsps bSps, 1606, Y2, Y2, Y2, By

5

2 m
Q65€n6,05 = e o

Me

s coth (1555 tis) Fss 15ns, 06n6, Y2, Y2, Y2, by

2
Q65fn6,n5=% e csch (I5ns tys) Fss B5ns, 1606, Y2, Y2, Y2, tye

By using (14), the development of (31b) gives

C3ﬁ3 Q63Cn6,h3+d3)f~(|3 Q63dn6,h3

y - h3=1
f6p =

¥ oy
+ f3n3 Q63 fn6’n3
n3=1

2 mg cos (b33 t3)

Q63cCne 3 = te M sh b3y bo Fshs D3h3, 16n6,Y3,Y2, Y2, by
2 mg cos(b3,; tys

Q63dne 3 = T M W Fshs b3n3, 16n6, Y2, Y2, Y2, tys
2 Mg

Q63fn6,n3:t76 m*g coth (13n3 t3) Fss 13n3, 1606, Y2, Y2, Y2, tye -
y

Appendix C.8 Expression of ¢77, d77, c7),, d7), e7?’17 and f7ﬁ7 for Region 7
By using (4) and (32d), the development of (35a) and (35b) gives

¥
7}, = EST1y; d1}; Q71dp7ps,
h1=1

C
1
- Fs(blpy, X1, X4, t7)
Q7ldhrm = & bi; th blm b7

2 b7h; Fes (b7h7, blpg, Xa, X1, X4, &7)

é Azpriy=y,  forh7=0

ES71,; =
forh7& 0

By using (8) and (32d), the development of (35¢) and (35d) gives

¥
d7§7 = ES72h7 CZEZ Q72Ch7,h21
h2=1
C
1
= Fs (022, X1, X4, t7)
Q720h7n2 = ¢ s th b2 tp b )

2 b7h7 ch (b7h7- b2h21 X4, X1, Xg, tX7)

forh7 =0
forh7 60

forh7 =0
forh7 60
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1 ; —
= A — forh7 =0
ES72,; = T APrly=y, (C.20c)
forh7 &0
By using (24), the development of (36a) gives
C5é5 Q75C'n7,h5 + d5;](5 Q75dn7,h5
f7ﬁ7 — hs=1 , (C.21a)
y y
+ =1 65n5 Q756n7’n5 -+ f5n5 Q75 fn7’n5
n5=

2 m; cos(b5ys tys)
75¢ = — — ————=—= F b5nc, 17h7, V3, Y2, V2, , C.21b
Q75¢Ch7,ns 7 M5 sh b s shs  OShs, 17n7, Y3, Y2, Y2, ty7 ( )

2 my7 cos (b5 txs)

Q75dh7h5 = T M sh boys G Fshs 05ns, 17n7,Y2, Y2, Y2, b7 (C.21c)
y
2 m
Q75en7,n5 = Y m{, csch (B5n5 ts) Fss U5ps, 17n7,Y2,¥2, Y2, &7 (C.21d)
2 m
Q75fn7,n5:t77 m% coth (0545 ts) Fss B5n5, 17n7,Y2, Y2, Y2, 7 . (C.21¢)
y

By using (19), the development of (36b) gives

C4;1(4 Q74cn7,h4+d4é4 Q74dn7,h4

e7z7: =1 , , (C.22a)
=+ €4n4 Q746n7’n4
n4=1

2 my

Q74Ch7hs = T m csch bdny by Fsps Ddng, 17n7,Y3,¥2, Y2, ty7 (C.22b)
2 m

QTadurne = ¢ m—j csch bdns T Fons bdng, 17n7,y2.¥2,¥2, b7 (C.220)
2 m

Q74en7na = E mfzf coth (14ps ) Fss |4n4y|7n7aYZaYZaYZ7ty7 . (C.22d)
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